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PREFACE

Tools that are comfortable after experience are often more difficult to
learn at first than those that feel right immediately. Student pilots start
out overcontrolling, turning first flights into roller-coaster rides, until
they learn how light a touch flying really requires. Training wheels on a
bicycle make it easier for a novice to ride, but get in the way after that.

So it is also with programming languages. Every programming
language has aspects that are most likely to cause trouble for people not
yet thoroughly familiar with them. These aspects vary from one
language to another, but are surprisingly constant from one programmer
to another. Thus the idea of collecting them.

My first effort to collect such problems was in 1977, when I gave a
talk called PL/I Traps and Pitfalls at the SHARE(IBM mainframe users'
group) meeting in Washington DC. That was shortly after I moved from
Columbia University, where people used' PL/I heavily, to AT&T Bell
Laboratories, where people use C heavily. The decade that followed gave
me ample experience in how C programmers (including me) can get
themselves into trouble if they're not certain of what they're doing.

I started collecting C,problems in 1985and published the collection as
an internal paper at the end of that year. The response astonished me:
more than 2,000 people requested copies of the paper from the Bell Labs
library. That convinced me to expand the paper into this book.

What this book is

C Traps and Pitfalls aims to encourage defensive programming by showing
how other people, even experienced professionals, have gotten them-
selves into trouble. These mistakes are generally easy to avoid once seen
and understood, so the emphasis is on specific examples rather than gen-
eralities.

This book belongs on your shelf if you are using C at all seriously,
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vi C TRAPS AND PITFALLS PREFACE

even if you are an expert: many of the professional C programmers who
saw early drafts said things like "that bug bit me just last week!" If you
are teaching a course that uses C, it belongs at the top of your supple-
mentary reading list.

What this book is not

This book is not a criticism of C. Programmers can get themselves into
trouble in any language. I have tried here to distill a decade of C experi-
ence into a compact form in the hope that you, the reader, will be able to
avoid some of the stupid mistakes I've made and seen others make.

This book is not a cookbook. Errors cannot be avoided by recipe. If
they could, we could eliminate automobile accidents by plastering the
countryside with Drive Carefully signs! People learn most effectively
through experience - their own or someone else's. Merely understand-
ing how a particular kind of mistake is possible is a big step on the way
to avoiding it in the future.

This book is not intended to teach you how to program in C (see Ker-
nighan and Ritchie: The C Programming Language, second edition,
Prentice-Hall 1988), nor is it a reference manual (see Harbison and Steele:
C: A Reference Manual, second edition, Prentice-Hall 1987). It does not
mention algorithms or data structures (see Van Wyk: Data Structures and C
Programs, Addison-Wesley 1988), and only briefly discusses portability
(see Horton: How to Write Portable Programs in C, Prentice-Hall 1989) and
operating system interfaces (see Kernighan and Pike: The UNIX Program-
ming Environment, Prentice-Hall 1984). The problems mentioned are real,
although often shortened (for a collection of composed C problems see
Feuer: The C Puzzle Book, Prentice-Hall 1982). It is neither a dictionary
nor an encyclopedia; I have kept it short to encourage you to read it all.

Your name in lights

I'm sure I've missed some pitfalls. If you find one I've missed, please
contact me via Addison-Wesley. I may well include your discovery, with
an acknowledgment, in a future edition.

A word about ANSI C

As I write this, the ANSI C standard is not yet final. It is technically
incorrect to refer to "ANSI C" until the ANSI committee finishes its
work. In practice, though, the ANSI standard is far enough along that
nothing I say about ANSI C is likely to change. C compilers are already
available that implement many of the significant improvements contem-
plated by the ANSI committee.
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Don't worry if your C implementation does not support the ANSI
function syntax mentioned here: is it easy enough to understand the parts
of the examples where it matters, and you can fall into the traps
described there regardless of what version of C you use.
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CHAPTER 0: INTRODUCTION

I wrote my first computer program in 1966, in Fortran. I had intended it
to compute and print the Fibonacci numbers up to 10,000: the elements of
the sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., with each number after the second
being the sum of the two preceding ones. Of course it didn't work:

I = 0
J = 0
K 1
PRINT 10, K
I J
J = K
K = I + J
IF (K - 10000) 1, 1, 2

2 CALL EXIT
10 FORMAT (I10)

Fortran programmers will find it obvious that this program is missing an
END statement. Once I added the END statement, though, the program
still didn't compile, producing the, mysterious message ERROR 6.
Car;eful reading of the manual eventually revealed the problem: the

Fortran compiler I was using would not handle integer constants with
more than four digits. Changing 10000 to 9999 solved the problem.
I wrote my first C program in 1977. Of course it didn't work:

#include <stdio.h>

main( )
{

printf ("Hello world");

This program compiled on the first try. Its result was a little peculiar,
though: the terminal output looked somewhat like this:

1



2 INTRODUCTION CHAPTER 0

% cc prog.c
% a.out
Hello world%

Here the % character is the system's prompt, which is the string the sys-
tem uses to tell me it is my turn to type. The % appears immediately after
the Hello world message because I forgot to tell the system to begin a
new line afterwards. Section 3.10 (page 51) discusses an even subtler
error in this program.

There is a real difference between these two kinds of problem. The
Fortran example contained two errors, but the implementation was good
enough to point them out. The C program was technically correct - fro!ll
the machine's viewpoint it contained no errors. Hence there were no
diagnostic messages. The machine did exactly what I told it; it just didn't
do quite what I had in mind.

This book concentrates on the second kind of problem: programs that
don't do what the programmer might have expected. More than that, it
will concentrate on ways to slip up that are peculiar to C. For example,
consider this program fragment to initialize an integer array with N ele-
ments:

int i;
int a[N];
for (i = 0; i <= N; i++)

a[i] = OJ

On many C implementations, this program will go into an infinite loop!
Section 3.6 (page 36) shows why.

Programming errors represent places where a program departs from
the programmer's mental model of that program. By their very nature
they are thus hard to classify. I have tried to group them according to

. their relevance to various ways of looking at a program.
At a low level, a program is as a sequence of symbols, or tokens, just as

a book is a sequence of words. The process of separating a program into
symbols is called lexical analysis. Chapter 1 looks at problems that stem
from the way C lexical analysis is done.

One can view the tokens that make up a program as a sequence of
statements and declarations, just as one can view a book as a collection of
sentences. In both cases, the meaning comes from the details of how
tokens or words are combined into larger units. Chapter 2 treats errors
that can arise from misunderstanding these syntactic details.

Chapter 3 deals with misconceptions of meaning: ways a programmer
who intended to say one thing can actually be saying something else.
We assume here that the lexical and syntactic details of the language are
well understood and concentrate on semantic details.
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Chapter 4 recognizes that a C program is often made out of several
parts that ate compiled separately and later bound together. This process
is called linkage and is part of the relationship between the program and
its environment.
That environment includes some set of library routines. Although not

strictly part of the language, llbrary routines are essential to any C pro-
grain that does anything useful. In particular, a few library routines are
used by almost every C program, and there are enough ways to go wrong
using them to merit the discussion in Chapter S.
Chapter 6 notes that the program we write is not really the program

we run; the preprocessor has gotten at it first. Although various prepro-
cessor implementations differ somewhat,. we can say useful things about
aspects that many implementations have in common.

Chapter 7 discusses portability problems - reasons a program might
run on one implementation and not another. It is surprisingly hard to do
even simple things like integer arithmetic correctly.
Chapter 8 offers advice in defensive programming and answers the

exercise.s from the other chapters.
Firtally, art Appendix covers three common' but widely misunderstood

library facilities.

Exercise 0-1. Would you buy an automobile made by a company with a
high proportion of recalls? Would that change if they told you they had
cleaned up their act? What does it really cost for your users to find your
bugs for you? 0

Exercise 0-2. How many fence posts 10 feet apart do you need to support
100 feet of fence? 0

Exercise 0-3. Have you ever cut yourself with a knife while cooking?
How could cooking knives be made safer? Would you want to use a
knife that had been modified that way? 0





CHAPTER i: lEXICAL PITFAllS

When we read a sentence, we do not usually think about the meaning of
the individual letters of the words that make it up. Indeed, letters mean
little by themselves: we group them into words and assign meanings to
those words.
So it is also with programs in C and other languages. The individual

characters of the program do not mean anything in isolation but only in
context. Thus in

p->s "_>11;

the two instances of the - character mean two different things. More
precisely, each instance of - is part of a different token: the first is part of
-> and the second is part of a character string. Moreover, the -> token
has a meaning quite distinct from that of either of the characters that
make it up.
The word token refers to a part of a program that plays much the same

role as a word in a sentence: in some sense it means the same thing every
time it appears. The same sequence of characters can belong to one token
in one context and an entirely different token in another context. The
part of a compiler that breaks a program up into tokens is often called a
lexical analyzer.
For another example, consider the statement:

if (x > big) big = Xj

The first token in this statement is if, a keyword. The next token is the
left parenthesis, followed by the identifier x, the "greater than" symbol,
the identifier big, and so on. In C, we can always insert extra space
(blanks, tabs, or newlines) between tokens, so we could have written:

5



6 LEXICAL PITFALLS

if

x

>
big
)

big

x

CHAPTER 1

'\n' )

This chapter will explore some common misunderstandings aboiit the
meanings bf tokens and the relationship between tokens and the charac-
ters that make them up.

1.1 = is not ==

Most programming languages derived froin Algol, such as Pascal and
Ada, use : = for assignment and = for comparison. C, on the other hand,
uses = for assignment and == for comparison. This is convenient: assign-
ment is more frequent than comparison, so the shorter symbol is written
more often. Moreover, C treats assignment as an operator, so that multi-
ple assignments (such as a=b=c) can be written easily and assignments
can be embedded in larger expressions.

This convenience causes a potential problem: one can inadvertently
write an assignment where one intended a comparison. Thus, the follow-
ing statement, which apparently executes a break if x is equal to y:

if (x = y)
break;

actually sets x to the value of y and then checks whether that value is
nonzero. Or consider the following loop, which is intended to skip
blanks, tabs, and new lines in a file:

while (c=":: c== '\t':: c
c = getc(f);

This loop mistakenly uses = instead of -- in the comparison with ' '.
Because the = operator has lower precedence than the :: operator, the
"comparison" actually assigns to c the value of the entire expression

, , I I
I I c == '\t' :: c == '\n'

The value of' , is nonzero, so this expression evaluates to 1 regardless
of the (previous) value of c. Thus the loop will eat the entire file. What
it does after that depends on whether the particular implementation
allows a program to keep reading after it has reached end of file. If it
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does, the loop will run forever.
Some C compilers try to help their users by giving a warning message

for conditions of the form el == e2. When assigning a value to a variable
and' then checking whether the variable is zero, consider making the
comparison explicit to avoid warning messages from such compilers. In
other words, instead of

if (x = y)
foo() ;

write:

if ((x = y) 1= 0)
foo() ;

This will also help make your intentions plain. We'll talk in Section 2.2
(page 17) about why the parentheses are needed around x = y.

It is possible to confuse matters in the other direction too:

if ((filedesc == open(argv[i], 0» < 0)
error() ;

The open function in this example returns -1 if it detects an error and
zero or a positive number if it succeeds. This fragment is intended to
store the result of open in filedesc and check for success at the same
time. However, the first == should be =. As written, it compares
filedesc with the result of open and checks whether the result of that
comparison is negative. Of course it never is: the result of == is always 0
or 1 and never negative. Thus error is not called. Everything appears
normal but the value of filedesc is whatever it was before, which has
nothing to do with the result of open. Some compilers might warn that
the comparison with 0 has no effect, but you shouldn't count on'it. '

1.2 & and : are not && or ::

It is e?sy to miss an inadvertent substitution of = for == because so many
other languages use = for comparison. It is also easy to interchange &
and &&, or : and ::, especially because the & and : operators in Care
different from their counterparts in some other languages. Section 3.8
(page 48) will discuss the precise meanings of these operators.

1.3 Greedy lexical analysis
Some C tokens, such as /, *, and =, are only one character long. Other C
tokens, such as / *, ==, and identifiers, are several characters long. When
a C compiler encounters a / followed by an *, it must be able to decide
whether to treat these two characters as two separate tokens or as one
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single token. C resolves this question with a simple rule: repeatedly bite
off the biggest possible piece. That is, the way to convert a C program to
tokens is to move from left to right, taking the longest possible token
each time. This strategy is also sometimes referred to as greedy, or, more
colloquially, as the maximal munch strategy. Kernighan and Ritchie put it
this way: "If the input stream has been parsed into. tokens up to a given
character, the next token is taken to include the longest string of charac-
ters which could possibly constitute' a token." Tokens (except string or
character constants) never contain embedded white space (blanks, tabs, or
newlines).

Thus, for instance, == is a single token, = = is two, and the expression

a---b

means the same as

a -- - b

rather than

a - -- b

Similarly, ifa / is the first character of a token, and the / is immediately
followed by *, the two characters begin a comment, regardless of any
other context.

The following statement looks like it sets y to the value of x divided
by the value pointed to by p:

1* p points at the divisor *1;

In fact, / * begins a comment, so the compiler will simply gobble pro-
gram text until the */ appea~s. In other words, the statement just sets y
to the value of x and doesn't even look at p. Rewriting this statement as

or even

y = x I *p

y = x/(*p)

1* P points at the divisor *1;

1* P points at the divisor */j

would cause it to do the divisIon the comment suggests.
This sort of near-ambiguity can cause trouble in other contexts. For

example, at one time.C used =+ to mean what is presently denoted by +=.
Some C compilers still accept the archaic usage; such a compiler will treat

a=-1 j

as meaning

a =- 1j

'.
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which means the same thing as

a = a - 1;'

This will surprise a programmer who intended

a == -1;

This kind of archaic compiler would also treat

as

a =/ * b ;

INTEGER CaNST ANTS 9

"left-handed widget"
"right-handed widget"
"franunis"

even though the / * looks like a comment.
Such older compilers also treat compound assignments as two tokens.

Such a compiler will handle

a » = 1;

with no problem but a strict ANSI C compiler will reject it.

1.4 Integer constants

If the first character of an integer constant is the digit 0, that constant is
taken to be in octal. Thus 10 and 010 mean very different things. More-
over, many C compilers accept 8 and 9 as "&ctal" digits without com-
plaint. The meaning of this strange construct follows from the definition
of octal numbers. For instance, 0195 means lxg2+9xg1+5xgO, which is
equivalent to 141 (decimal) or 0215 (octal). Obviously we recommend
against such usage. ANSI C prohibits it.

Watch out for inadvertent octal values in contexts like this:

struct
int part_number;
char *description;

parttab[] =
046,
047,
125,

} ;

1.5 Strings and characters

Single and double quotes mean very different things in C, and confusing
them in some contexts will result in surprises rather than error messages.

A character enclosed in single quotes is just another way of writing
the integer that corresponds to the given character in the
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implementation's collating sequence. Thus, in an ASCII implementation,
, a' means exactly the same thing as 0 141 or 97.

A string enclosed in double quotes, on the other hand, is a short-hand
way of writing a pointer to the initial character of a nameless array that
has been initialized with the characters between the quotes and an extra
character whose binary value is zero.

Thus the statement

printf( "Hello world\n");

is equivalent to

char hello[] = {'H', 'e', '1', '1', '0', ' ,
, w', , 0', ,r', ' 1 " ' d', , \n', O};

printf(hel1o) ;

Because a character in single quotes represents an integer and a character
in double quotes represents a pointer, compiler type checking will usu-
ally catch places where one is used for the other. Thus, for example, say-
ing

char *slash = 'I';

will yield an error message because ' /' is not a character pointer. How-
ever, some implementations don't check argument types, particularly
arguments to printf. Thus, saying

printf ('\n' ) ;

instead of

printf( "\n");

may result in a surprise at run time instead of a compiler diagnostic. Sec-
tion 4.4 (page 57) discusses other cases in detail.

Because an integer is usually large enough to hold several characters,
some C compilers permit multiple characters in a character constant as
well as a string constant. This means that writing 'yes' instead of
"yes" may well go undetected. The latter means "the address of the first
of four consecutive memory locations containing y, e, s, and a null char-
acter, respectively." The meaning of 'yes' is not precisely defined, but
many C implementations take it to mean "an integer that is composed
somehow of the values of the characters y, e, and s." Any similarity
between these two quantities is purely coincidental.

Exercise 1-1. Some C compilers allow nested comments. Write a C pro-
gram that finds out if it is being run on such a compiler without any error
messages. In other words, the program should be valid under both com-
ment rules, but should do different things in each. Hint. A comment
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symbol / * inside a quoted string is just part of the string; a double quote
1111 inside a comment is part of the comment. D

Exercise 1-2. If you were writing a C compiler, would you make it possi-
ble for users to nest comments? If you were using a C compiler that per-
mitted nested comments, would you use that facility? Does your answer
to the second question affect your answer to the first? D

Exercise 1-3. Why does n-->O mean n-- > 0 and not n- -> O? D

Exercise 1-4. What does a+++++b mean? D





CHAPTpR 2: SYNTACTIC PITFALLS

To understand a C program, it is not enough to understand the tokens
that make it up. One must also understand how the tokens combine to
form declarations, expressions, stateD:!'ents, and programs. While these
combinations are usually well-defined, the definitions are sometimes
counter-intuitive or confusing. This chapter looks at some syntactic con-
structions that are less than obvious.

2.1 Understanding function declarations
I once talked to someone who was writing a C program to run stand-
alone in a microprocessor. When this machine was switched on, the
hardware would call the subroutine whose address was stored in location
zero.
In order to simulate turning power on, we had to devise a C statement

that would call this subroutine explicitly. AfteJ."some thought, we came
up with the following:

(*(void(*) () )0) ();

Expressions like these strike terror into the hearts of C programmers.
T~ey needn't, though, because they can usually be constructed quite
easily with the help of a single, simple rule: declare it the way you use it.
Every C variable declaration has two parts: a type and a list of

expression-like things called declarators. A declarator looks something
like an expression that is expected to evaluate to the given type. The
simplest declarator is a variable:

float f, g;

indicates that the expressions f and g, when evaluated, will be of type
float. Because a declarator looks like an expression, parentheses may be
used freely:

13



14 SYNTACTIC PITFALLS CHAPTER 2

float «f));

means that « f)) evaluates to a float and therefore, by inference, that
f is also a f1o~t.'

Similar logic ~pplies to function and pointer types. For example,

float ff();

means that the expression ff () is a float, and therefore that ff is a
function that returns a float. Analogously,

float *pf;

means that *pf is a float and therefore that pf is a pointer to a float.
These forms combine in declarations the same way they do in expres-

sions. Thus

float *g(), (*h)();

says that *g ( ) and (*h) ( ) are float expressions. Since () binds more
tightly than *, *g () means the sam~ thing as * (g ( ) ): g is a function
that returns a pointer to a float, and h is a pointer to a function that
returns a float.

Once we know how to declare a variable of a given type, it is easy to
write a cast for that type: just remove the variable name and the semi-
colon from the declaration and enclose the whole thing in parentheses.
Thus, since

float (*h) ();

declares h to be a pointer to a function returning a float,

(float (*)())

is a cast to a pointer to a function returning a float.
We can now analyze the expression (* (void (* ) ( ) ) 0 ) () in two

stages.
First, suppose that we have a variable fp that contains a function

pointer and we want to call the function to which fp points. That is
done this way:

(*fp) ();

If fp is a pointer to a function, *fp is the function itself, so (*fp) ( ) is
the way to invoke it. ANSI C p~rmits this to be abbreviated as fp( ), but
keep in mind that it is only an abbreviation.

The parentheses around *fp in t~e expression (*fp) ( ) are essential
because function application binds more tightly than unary operators.
Without parentheses*fp() means precisely the same as *(fp()). ANSI
C treats this as an a1?breviation for * ( (*fp) ( ) ).
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We have now reduced the problem to that of finding an appropriate
expression to replace fp. This problem is the second part of our analysis.
If C could read our mind about types, we could write:

(*0) ( );

This doesn't work because the * operator insists on having a pointer as
its operand. Furthermore, the operand must be a pointer to a function so
that the result of * can be called. Thus, we need to cast 0 into a type
loosely described as "pointer to function returning void."

If fp is a pointer to a function returning void, then (*fp) ( ) is a void
value, and its declaration would lbok like this:

void (*fp) ( ) ;

Thus, we could write:

void (*fp) ();
(*fp) ();

at the cost of declaring a dummy variable. But once we know how to
declare the variable, we know. how to cast a constant to that type: just
drop the name from the variable declaration. Thus, we cast 0 to a
"pointer to function returning void" by saying:

(void(*) (»O

and we can now replace fp by (void ( * ) ( ) ) 0:

(*(void(*) () )0) ();

The semicolon on the end turns the expression into a statement.
At the time I tackled this problem, there was no such thing as a

typedef declaration. Although going through this example without
typedef is a good way to expose the details, typedef makes it clearer:

typedef void (*funcptr)();
(*(funcptr)O)();

This messy example has relatives that C programmers may meet more
often. Consider, for example, the signal library function. In C imple-
mentations that include this function, it takes two arguments: an integer
code representing the particular signal to be trapped, and a pointer to a
user-supplied function, returning void, to handle that signal. Section 5.5
(page 74) discusses this function in more detail.

Programmers do not generally declare the signal function them-
selves. Instead, they rely on a declaration from the system header file
signal. h. How does that header file declare the signal function?
It is easiest to start by thinking about the user-defined signal handler
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function, which might be defined this way:

void
sigfunc(int n)
{

/ * signals handled here */

CHAPTER 2

The argument to sigfunc is an integer representing a signal number; we
will ignore it for now.

The (hypothetical) function body above defines sigfunc. To declare
it, we would write:

void sigfunc(int);

Now assume ..we want to declare sfp as a variable that might point to
sigfunc. If sfp points to sigfunc, then *sfp must represent sigfunc
itself, and hence *sfp is callable. Then if sig is an int, (*sfp) (sig)
is a void, so we declare sfp this way:

void (*sfp)(int);

This shows how to declare signal. Since signal returns a value of the
same type as sfp, we must be able to declare it this way:

void (*signal (something) ) (int) ;

The something here represents the types of signal's arguments, .which
we must still understand how to write. One way to read this declaration
is to treat it as saying that calling signal with appropriate arguments,
dereferencing the result, and then calling that with an int argument
gives a void. Thus signal must be a function that returns a pointer to a
function returning void.

What about the arguments to signal itself? We want to say that
signal accepts two arguments: an int signal number and a pointer to a
user-defined signal handler function. Originally we declared a pointer to
a signal handler function by saying

void (*sfp)(int);

The type of sfp is obtained by dropping sfp from its declaration to
obtain void ( * ) ( int). Moreover, the signal function returns a pointer
to the previous handler for that signal type; this pointer is also an sfp.
Thus we can declare the signal function by saying:

void (*signal(int,void(*)(int»)(int);

Again, typedef declarations can simplify this:
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typedef void (*HANDLER)(int);
HANDLER signal(int,HANDLER)j

2.2 Operators don't always ~ave the precedence you want
Suppose that the defined constant FLAG is an integer with exactly one bit
turned on in its binary representation (in other words, a power of two),
and you want to test whether the integer variable flags has that bit
turned on. The usual way to write this is:

if (flags & FLAG) ...

The meaning of this is plain to most C programmers: an if statement
tests whether the expression in the parentheses evaluates to a or not. It
might be nice to make this test more explicit for documentation purposes:

if (flags & FLAG 1= 0) ...

The statement is now easier to understand. It is also wrong, because I=
binds more tightly than &, so the interpretation is now:

if (flags & (FLAG 1= 0)) ...

This will work (by coincidence) if FLAG is 1 but not otherwise.
Suppose you have two integer variables, hi and low, whose values

are between a and 15 inclusive, and you want to set an integer r to an 8-
bit value whose low-order bits are those of low and whose high-order
bits are those of hi. The natural way to do this is to write:

r = hi«4 + low;

Unfortunately, this is wrong. Addition binds more tightly than shifting,
so this example is equivalent to:

r = hi « (4 + low);

Here are two ways to get it right. The second suggests that the real prob-
lem comes from mixing arithmetic and logical operations; the relative
precedence of shift and logical operators is more intuitive:

r (hi« 4) + low;
r = hi « 4 : low;'

One way to avoid these problems is to parenthesize everything, but
expressions with too many parentheses are hard to understand. Thus it
may be useful to try to remember the precedence levels in C.

Unfortunately, there are fifteen of them, so this not always easy. The
complete table appears below.

We can make this table easier to remember by classifying the operators
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operator associativity
( ) [ ] -> left
! - ++ -- - (type) * & sizeof right

* / % left

+ - left
« » left
< <= > >= left

-- != left

& left
" left
I leftI

&& left
I I leftI I

? : right
assignments. right

, left

Operator precedence table.
(operators near the top bind most tightly)

into groups and .understanding the motivation for the relative precedence
of the groups.

The things that bind the most tightly are the ones that aren't really
operators: subscripting, function calls, and structure selection. These all
associate to the left: a. b .c means the same as (a .b) .c and not
a. (b.c).

Next come the unary operators. These have the highest precedence of
any of the true operators. Because function calls bind more tightly than
unary operators, you must write (*p) ( ) to call a function pointed to by
p; *p ( ) means the same thing as * (p ( ) ). Casts are unary operators and
have the same precedence as any other unary operator. Unary operators
are right-associative, so *p+ + is interpreted as * (p+ +) (fetch the object
pointed .•to by p and later increment p) and not as (*p) ++ (increment the
object pointed to by p). Section 3.7 (page 46) points out that the precise
meaning of p++ can sometimes be surprising.

Next come the true binary operators. The arithmetic operators have
the highest precedence, then the shift operators, the relational operators,
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the logical operators, the assignment operators, and finally the condi-
tionaloperator. The two most important things to keep in mind are:

1. Every logical operator has lower precedence than every relational
operator.

2. The shift operators bind more tightly than the relational operators but
less tightly than the arithmetic operators.

Within the various operator classes, there are few surprises. Multipli-
cation, division, and remainder have the same precedence, addition and
subtraction have the same precedence, and the two shift operators have
the same precedence. Some people may be surprised to find that 1/2*a

means lxa and not _1_, but C behaves the same way in this respect as
2 2xa

Fortran, Pascal, and most other programming languages.
One sm~ll surprise is that the six relational operators do not all have

the same precedence: == and != bind less tightly than the other rela-
tional operators. This allows us, for instance, to see if a and b are in the
same relative order as c and d by the expression

a < b == c < d

Within the logical operators, no two have the same preced~nce. The
bitwise operators all bind more tightly than the sequential operators, each
and operator bi-!lds more tightly tha~ the corresponding qr operator, and
the b~twise exclusive or operator A falls between bitwise and and bitwise
or.

The precedence of these operators comes about for historical reasons.
B, the predecessor of C, had logical operators that corr~sponded roughly
to C's & and : operators. Although they were defined to act on bits, the
compiler would treat them as the pr~sent && and :: operators if they
were used in a conditional context. When the two usages were split apart
in C, it was deemed too dangerous to change the precedence much.

The ternary conditional operator has lower precedence than any we
have mentioned so far. This permits the selection expression to contain
logical combinations of relational operators, as in

tax_rate = income> 40000 && residency < 5? 3.5: 2.0;

Thi~ example also shows that it makes sense for assignment to have a
lower precedence than the conditional operator. Moreover, all the
assignment operators have the same precedence and they all group right
to left, so that:

home score visitor score o.,
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means the same as

visitor_score = 0;
home_score = visitor_score;

CHAPTER 2

Lowest of all is the comma operator. This is easy to remember because
the comma is often used as a substitute for the semicolon when an
expression is required instead of a statement. The comma operator is par-
ticularly useful in macro definitions (see Section 6.3 (page 82) for further
discussion of this).

The assignment operator is often involved in precedence mixups.
Consider, for example, the following loop intended to copy one file to
another:

while (c=getc(in) 1= EOF)
putc(c,out) ;

The expression in the while statement looks like c should be assigned
the value of getc ( in) and then compared with EOF to terminate the
loop. Unhappily, assignment has lower precedence than any comparison
operator, so the value of c will be the result of comparing getc ( in), the
value of which is then discarded, and EOF. Thus, the "copy" of the file
will consist of a stream of bytes each of which has the (binary) value 1.

The example above should be written:

while ((c=getc(in)) 1= EOF)
putc(c,out) ;

Errors of this sort can be hard to spot in more complicated expressions.
For example, one version of the lint program mentioned in Section 4.0
(page 53) was distributed with the following erroneous line:

if( (t=BTYPE(pt1->aty)==STRTY) :: t==UNIONTY ){

This was intended to assign a value to t and then see if t is equal to
STRTYor UNIONTY. The actual effect is quite different: t gets the value 1
or 0 depending on whether BTYPE(pt1->aty) is equal to STRTY; if t is
zero, t is then compared with UNIONTY.

2.3 Watch those semicolons!

An extra semicolon in a C program may be harmless: it might be a null
statement, which has no effect, or it might elicit a diagnostic message
from the compiler, which makes it easy to remove.- One important excep-
tion is after an if or while clause, which must be followed by exactly
one statement. Consider this example:
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if (x[i] > big);
big = x[i];

WATCH THOSE SEMICOLONS! 21

The compiler will happily digest the semicolon on the first line and
because of it will treat this progTi.vnfragment as something quite dif-
ferent from:

if (x[i] > big)
big = x[i];

The first example is equivalent to:

if (x[i] > big) {}
big;::x[i];

which is, of course, equivalent to:t

big = x[i];

Leaving out a semicolon can cause quiet trouble too:

if (n < 3)
return

logree.date x[O];
logree.time x[1];
logree.eode x[2];

Here the return statement is missing a semicolon; yet this fragment may
well compile without error, treating the entire statement

logree.date = x[O];

as if it were the operand of the return statement. It is the same as:

if (n < 3)

return logree.date = x[O];
logree.time x[1];
logree.eode = x[2];

If this fragment were part of a function declared to return void, one
would expect the compiler to flag it as an error. However, functions that
don't return a value are often written with no return type at all, impli-
citly returning an into Thus this error may go undetected. Its effect is
insidious: if n ~3, the first of the three assignment statements is simply
skipped.
Another place that a semicolon can make a big difference is at the end

of a declaration just before a f~nction definition. <:onsider the following
fragment:

t Unless x, i, or big is a macro with side effects.
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struct logrec {
int date;
int time;
ipt code;

main( )
{

CHAPTER 2

There is a semicolon mIssmg between the first } and the definition of
main that immediately follows it. The effect of this is to declare that the
function main returns a struct logre~, which is defined as part of this
declaration. Think of it this way:

struct logrec {
int date;
int time;
int qode;

main( )

If the semic<:>lonwere present, main would be defined by default as
returning an into

The effect of returning a struct logrec from main instead of an
int is left as an exercise in morbid imagination.

2.4 The switch statement
C is unusual in that the cases in its switch statement can flow into each
other. Consider, fo'r example, the foUowi~g program fragments in C a~d
Pascal:' ,

switch (color) {
case 1: p~iritf("red");

break;
case 2: pr;intf("yellow");

creak;
case 3: ~rintf("blue");

break;
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case color of
1: write('red');
2: write('yellow');
3: write('blue~)
end

THE SWITCH STATEMENT 23

Both these programfrag~ents do the same thing: print red, yellow,
o'r blue (without starting a new line), depending on whether the vari-
able color is 1, 2, or 3. The program fragments are exactly analogous,
with one exception: the Pascal program does not have any part that
corresponds to the C break statement. The reason for that is that case
labels in C behave as true labels, in that control flows unimpeded right
through a case label. In Pascal, on the other hand, every case, label impli-
citly ends the previous case.

Viewing it another way, suppose the C fragment looked more like the
Pascal fragment:

switch (color)
case 1: printf("red");
case 2: printf("yellow");
case 3: printf("blue");

and suppose further that color were' equal "to 2. Then the program
would print

yellowblue

because control would pass naturally from the second printf call to the
statement after it .
. This is both a strength and a weakness of C swi tchstatements. It is a

weakness because leaving out a break statement is easy and oftengives
rise to obscure program misbehavior. It is a strength because by leaving
out a break statement deliberately, one can readily express a control
structure that is inconvenient to implement otherwise. Specifically, iri
large switch statements, one often finds that ~he processing for one of
the cases reduces to some other case after relatively little special han-
dling.

For example, consider a program that is an interpreter for some kind
of imaginary machine. Such a program might contain a switch state-
ment to handle each of the various operation codes. On such a machine,
it is often true that a subtract operation is identical to an add operation
after the sign of the second operand has been inverted. Thus, it is nice to
be able to write something like this:
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case SUBTRACT:
opnd2 -opnd2;
1* no break *1

case ADD:

CHAPTER 2

Of course, a com~ent such as the one in the example ~bove is a good
idea; it lets the reader know that the lack of a break statement is inten-
tional.

As another exampl~, consider th~ part of a compiler that skips white
space while looking for a to~en. Her~, one would want to treat spaces,
tabs, and newlines identically except th~t a newline should cause a line
counter to be incremented:

case '\n':
linecount++; .
1* no' break *1'

case '\t':
case , '.

2.5 Calling functions
Unlike some other programming languages, C requires a function call to
have an argument list even if there are no arguments. Thus, if f is a
function,

f() ;

is a statement that calls the function, but

f;

do'es nothing at all. More precisely, it evaluates the address of the func-
tion but does not call it.

2.6 'The dangling else' problem

Although this well-known problem is not unique to C, it has bitten C
programmers with many years of experience.

Conside~ the following program fragment:
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if (x == 0).
if (y == 0) error();

else {
z = x + y;
f (&.z) ;

THE DANGLING ELSE PROBLEM 25

The programmer's intention for this fragment is that there should be
two main cases: x=O and x ~O. In the first case, t~e fragment should do
nothing 'at all unless y=Q,' in which case it should call error. ' In the
second case, the' program should set z to ~+y and then call f with th~
address of zas its argument. .
However, the program fragment actually does something quitedif-

ferent. The reason is the rule that an else is always associated with the
closest unmatched if inside the same pair of braces. if we were to
indent this fragment the way it is actually executed, it would look like
this:

if (x == 0) {
if (y == 0)

'error() ;
else {

z = x + y;
f(&.z) ;

In 'other words, nothing' at all will happen if x ~O. To get the effect
implied by the indentation of the original example, write:

if (x == 0) {
if (y

, } else {

0)

error( );

z = x + y;
f (&.z) ;

The else herejs as~ociatE;dwith the first if, even though the second if
is.closer, because the second one is now enclosed in braces.
Some .programming 'l~nguages use ,explicit closing delimit~rs for if

statements. For example, the' example above would look like this' in
Algol 68:
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if X = 0
then

else

fi

if y = 0
then error
fi
z := x + y;
/(z)

Requiring closing delimiters this way completely avoids the dangling
else problem, at the cost of making programs slightly longer. Some C
users have tried to obtain a similar effect through macros:

#define IF
#define THEN
#define ELSE
#define FI

{if(

) then
} else
}}

This would allow the last C example above to be written this way:

IF x 0
THEN IF Y 0

THEN error( );
FI

ELSE z = x + y;
f (&.z) ;

FI

C users not steeped in Algol 68 find this code hard to read; this solution
may be worse than the problem.

Exercise 2-1. C permits an extra comma in an initializer list:

int days [ ] = { 31, 28, 31., 3D, 31, 3D,
31, 31, 30, 31, 3D, 31, };

Why is this useful? 0

Exercise 2-2. We have seen severCiI problems caused by the fact that C
statements end with semicolons. While it is too late to change that now,
it is fun to speculate about other ways of separating statements. How do
other languages do it? Do these methods have their own pitfalls? 0
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A sentence can be perfectly spelled and written with impeccable graIIl-
.mar and still have an ambiguous or unintentional meaning. This chapter
looks at ways of writing i)f(jgra~s "that lools like they mean one thing but
actually mean something quite ~ifferent. .
It also discusses contexts in which things thilt look reasonable on the

surface actually give undefined r~sults' in all C implementations. Things
that mi!?ht. work on some implementations but not others are mentioned
ih Chapter 7, which look!! at portability pro~lems.

3.1 Po~nters and. arrays
The C notions of pointers and arrays are inseparably joined, to the extent
that it is impossible to understand one thoroughly without also under~
standing the other. Moreover, C treats some. ~.spects of these notions dif-
f~rently from any other well-known language.
Two ~hings st~n4 out about. ~ arrays:

1. C has only one-dimensional arrays, and the size of an array must be
fixed as "a constant at compilation time. However, an element of an
array may be an object of any type, including another array; thi!!
makes it possible to simulate multi-dimensionalarrays fairly easily.

2. Only two things can be done to an array: determine its size and obtain
a pointer to ele~ent 0 of the amlY. All other array operations' are
actually q.one with pointers, even if they are written wit~ what look
like .subscript~. That" is, every subscript operation is equivalent to a
pointer operation, so it is possible to define the behavior of subscripts
entirely ih terms of the behavior of pointers. .

Once these two points and all their implications are thoroughly
understood,.C array operiitions become much easier. lJ~til then, they can
be a rich ~ource of confJ.lsion. In particular, it is impo~tant to be able to

27
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think about array operations and their corresponding pointer operations
interchangeably. Indexing is built into most other languages; in C it is
defined in terms of pointer arithmetic.

On the way to understanding how arrays work, we must understand
how to declare them. For example,

int a[ 3];

says that a is an array of three int elements. Similarly,

struct {
intp[4];
double X;

b[17];

says that b is an array of 17 elements, each of which is a structure con-
taining an (J.rray (named p) of four int elements and a double value
(named x).

Now consider

int calendar[12][31];

This says that calendar is an array of 12 arrays of 31 int elements each
(not an array of 31 arrays of 12 int elements each), so that
sizeof(calendar) is 372 (31X12) times sizeof(int).

If the name calendar is used in just about any context other than as
the operand of sizeof, it is converted to a pointer to the initial element
of calendar. To understand what this means, we must first underst~nd
some details about pointers.

Every pointer is a pointer to some type. For instance, if we write

int *ip;

we have said that ip is a pointer to an into If we now say

int i;
we can assign the address of i to ip by saying

ip = &i;

and then we can change the value of i by assigning to *ip:

*ip = 17;

If a pointer happens to point to an element of an array, we can add 1 to
that pointer to obtain a pointer" to the next element of that array. Simi-
larly, we can subtract 1 from the pointer to obtain a pointer to the previ-
ous element of that array, and so on for other integers.

This implies that adding an integer to a pointer is generally different
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from adding that integer to the bit representation of that pointer! If ip
points to an integer, ip+ 1 points to the next integer in the machine's
memory, which, for most modern computers, is not the next memory
location.

We can also subtract one pointer from another, provided that both of
them point to eleinents of the same array.

This makes good sense. If we have written

int *q = p + i;

then we should be able to obtain i by writing q-p. Notice that if p and
q don't point to elements of the same array, there is no way to guarantee
even that the distance between p and q is an integral multiple of an array
element!

We have already defined a as an array of three int values. If we use
the name of an array where a pointer is appropriate, that name is taken
to mean a pointer to element 0 of that array. Thus if we write

p = a;

we will set p to the address of element 0 of a. Notice that we did not say

p = &a;

That is illegal in ANSI C because &a is a pointer to an array but p is a
pointer to an into In most earlier versions of C, there is no notion of the
address of an array - &a is either illegal or equivalent to a.

Now that p points to element 0 of a, p+ 1 points to element 1, p+2 to
element 2, and so on. We can therefore make p point to element 1 by
saying

p = p + 1;

which, of course, is equivalent to saying

p++;

The name a refers to the address of element 0 of a in every context but
one: when a is used as an argument to the sizeof operator. There,
sizeof (a) does what one would reasonably expect: it yields the size of
the entire array a and not the size of a pointer to one of its elements!

One implication of all this is that it is possible to write *a as a refer-
ence to element 0 of a:

sets element 0 of a to 84. In a similar vein, * (a+ 1) refers to element 1
of a, and so on. In general, it is possible to refer to element i of a by
writing * (a+i); this notion is so common that it is abbreviated as a [i].
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it is preCisely thi~ idea that is so hard for new C programmers to
understand: In fact, since a+i and i+a mean the same thing, a[i] and
i [a] also mean the sam~ thing. Th~ lattt~r usage i~.definitely not recom-
mended, although Some assembly language programmers may find it
familiar.

Wedm now think about "two-dimensional arrays," which, as we have
already seen, are really arrays of arrays. VVhile it is not hard to write pro-
grams that. manipulate one-dimensional a~rays purely in terms of
pointers, the notational convenience of subscripts becomes nearly esseri-
tial for two-dimensional arrays. Moreover, using only pointers to mani-
pulate two-dimensional arrays leads us irito some of the darker corners of
the language, where compiler bugs are likely to lurk.

Consider again the declarations

int caleridar[12][31];
int *p;
in'!:i;

and ask yourself what might be the meaning of calendar [4]?
Since calendar is an array of 12 arrays of 31 int elements each,

calendar[4] is simpiy element 4 of that array. Thus calendar[4] is
one of the 12 arrays of 31 int elements in calendar and behaves
exactly that way. So, for instance; sizeof (calendar [4]) is 31 times
the size of an int, arid the effect of saying

p = caHmdar[4];

is to make p point to eiement 0 of the array calendar [4].
If calendar [4] is an array, we should be able to subscript it and say

i = calendar[4][7];

and indeed we can. Again, this statement is precisely equivalent to say-
ing

i =*(calendar[4] + 7);

which in turn is equivalerit to

i = *(*(caleridar+4) + 7);
liere the bracket notatlon IS clearly more convenient.

Now look at

'p = calendar;

This statement is illegai because c~lendar is an array of arrays; using
the name calend~r. in this context therefore conv~rts it to a pointer to
an array. Since p is a pointer to an int, we are trying to assign a pointer
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of one type toa pointer of another type.
Apparently, we need a way to declare a pointer to an array. After

wading through Chapter 2, it should not be too hard to construct it:

int (*ap) [31] ;

In effect, we are saying here that *ap is an array of 31 int elements, so
ap is a pointer to such an array. We can therefore write

int calendar[12][31];
int (*monthp)[ 31] ; .
monthp = calendar;

and monthp will then point to the first of the 12 31-element arrays that
are the elements of calendar.

Suppose a new year is beginning and we want to clear the calendar.
This is easy to do with subscripts:

int month;
for (month = 0; month .( 12; month++) {

int day;
for (day = 0; day < 31; day++)

calendar [month] [day] 0;

What is happening here in terms of pointers? It is easy enough to treat

calendar[month][day] ~ 0;

as

* (* (calendar + month") + day) 0;'

but what is really involved?
If monthp points to an array of 31 int values, it is possible to step

monthp through calendar just as with any other pointer:

int (*monthp) [31];
for (monthp = calendar;. monthp < &calendar[12]; monthp++)

/ * deal wIth a month ~/ .

Similarly, it is possible to deal with the elements of one of the arrays
pointed to by monthp just like any other array:

int (*monthp)[31];
for(monthp = calendar; monthp < &calendar[12]; monthp++){

int *dayp;
for(dayp ~ *monthp; dayp < &(*month)[31]; dayp++)

*dayp = 0;
}

At this point we have walked far enough out on the ice. that we had
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better turn back before falling through; although. this last example is
valid ANSI C, I had trouble finding a compiler that would accept it. The
point of this excursion has been to illustrate the unique relationship in C
between arrays and pointers, with the aim of sheddirtg more light on
both.

3.2 Pointers are not arrays
A character string constant in C represents the address of an area of
memory that holds the characters in the constant, followed by a null
character (' \0'). Because the language prescribes null terminators for
string constants, C programmers usually use that convention for other
strings as well.

Suppose we have two such strings sand t, and we want to concaten-
ate them into a single string r. To do this, we have the usual library
functions strcpy and strcat. The following obvious method doesn't
work:

ehar *r;
strepy(r, s);
streater, t);

The reason'it doesn't work is that r doesn't point anywhere. Moreover,
in order to make r point somewhere, it must have a place to point; that
memory must be allocated somehow.

Let's try again, allocating some memory for r:

ehar r [ 100] ;
strepy( r,- s l;
streater, t);

This now works' as long as the strings pointed to by 's and t aren't too
big. Unfortunately, C requires us to state the size of an array as a con-
stant, so there is no way to be certain that r will be big enough. How~
ever, mostC implementations have a library function called malloc that
takes a number and allocates enough memory for that many .characters.
There is also usually a function called strlen that tells how many char-
acters are in a string. It might seem, therefore, that we could write:

ehar *r, *malloe();
r = malloe(strlen(s) + strlen(t));
strepy(r, s);
streater, t);

This example, however, fails for three reasons. First, malloc might be
unable to provide the requested memory, an event that it signals by
returning a null pointer.
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Second, it is important to.remember to free the memory allocated for r
when done with it. Because the previous program declared r as a local
variable, r was freed automatically. The revised program 'allocates
memory explicitly and must therefore free it explicitly.
Third, and most importarit, is that the call to malloe doesn't allocate

quite enough memory. Recall the convention that a string is terminated
by a null character. The strien functio~ returns the number of charac-
ters in the argument string, excluding the null character at the end.
Therefore, if strlen( s) is n, s really requires n+l characters to contain
it. We must thus allocate one extra character for r. After doing this and
checking that malloe worked, we get: .

char *r, *malloc();
r = malioe(strlen(s) + strlen(t) + 1);
if (Ir) {

complain ();
exit( 1);

}
strepy(r, s);
streater, t);

1* some time later *1
free(r) ;

3.3 Array declarations as parameters
There is no way to pass an array to a function directly. Using an array
name as an argument immediately converts it to a pointer to the initial
element of the .array. For example, writing:

eh~r hello[! = "hella";

declares hello as an array of characters. Passing that array to a function:

printf ("%s\n" , hello);

is preCisely equivalent to passing the address of its initial character:

printf("%~'b", &hello[O]);

Thus it is never meaningful to use an array as a function parameter. For
this reason, C automatically converts an array parameter declaration to
the corresponding pointer declaration. In other words, writing
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int
strlen(char s[])
{

is precisely equivalent to writing

strlen(char *s)
{

CHAPTER 3

C programmers often suppose, incorrectly, that this automatic 'conversion
applies in other contexts as well. Section 4.5 (page 63) 'discusses one par-
ticularly common trouble spot in more detail:

extern char *hello;

is definitely not the same as

extern char hello[];

If a pointer parameter does not represent an array, it is misleading,
although technically correct, to use the array notation. What about
pointer parameters that do represent arrays? One 'common example is the
second argument to main:

main(int argc, char *argv[])
{

This is equivalent to

main(int argc,. char **argv)
{

but the former example emphasizes the idea that argv is a pointer to the
initial element of an array of character pointers. Because these two nota-
tions are equivalent, you can choose whichever expresses your intent
most clearly.

3.4 Eschew synecdoche

A synecdoche (Sin-ECK-duh-key) is a literary device, somewhat like a
simile or a metaphor, in which, according to the Oxford English Dictionary,
"a more comprehensive term is used for a less comprehensive or vice
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versa; as whole for part or pa~t for whole, genus for species or species for
genus, etc."
ThIs exactly describes the common C pitfall of confusing a pointer

with the data to which it points. This is most common for character
strings. For instance:

char *P, *q;
P = "xyz";

lt is important t~ understand that while it is sometimes useful to think of
the value of p as the string xyz after the assignment, this is not really
true. Instead, the value of p is a pointer to the Othelemerit of an array of
four characters, whose vaiues are ' x', ' y', ' z', and ' \0'. Thus, if we
now execute

q = P;

P and q are now two pointers to the same part of memory. The charac-
ters i~ that memory dId not get copied by the assignment. The situation
now looks like this:

The thing to remember is that copying a pointer does not copy the thing it
addresses.
Thus, if after this we were to execute

q[1l = 'y';

q would point to memory containing the string xYz. So would p,
because pand q point to the same memory.

3.5 Null poiriters are not null strings
The result of converting an integer to a pointer is implementatioh-
dependent, with one important exception. That exception is the constant
0, which is guaranteed to be converted to a pointer that is unequai to any
valid pointer. For documentatiori, this value is often given symbolically:

#define NULL 0

but the effect is the same. The important thing to remember about 0
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when used as a pointer is that it must never be dereferenced. In other words,
when you have assigned 0 to a pointer variable, you must not ask what is
in the memory it addresses. It is valid to write:

if (p == (char *) 0) ...

but it is not valid to write:

if (strcmp(p, (char *) 0) == 0) ...

because strcmp always looks at the memory addressed by its arguments.
If p is a null pointer, even the effects of

printf(p) ;

and

printf("%s", p);

are undefined. Moreover, statements like these may have different
effects on different machines. Section 7.6 (page 91) says more about this.

3.6 Counting and asymmetric bounds
If an array has 10 elements, what are the permissible values of its sub-
scripts?

Different languages answer this question differently. Fortran, PL/I,
and Snobol4, for example, start subscripts from 1 but allow the program-
mer to specify a different origin. Algol and Pascal have no default: the
programmer must give explicit lower and upper bounds for every array.
In standard Basic, declaring an array with 10 elements really allocates 11:
the subscripts range from 0 to 10 inclusive!

In C, subscripts run from 0 through 9. A 10-element array has a Oth
element but no 10th element. A C array with n elements does not have
an element with a subscript of n, as the elements are numbered from 0
through n-1. Because of this, programmers coming from other languages
must be especially careful when using arrays.

For instance, let's look at the example mentioned in Section 0.0 (page
2) more closely:

int i, a [ 10] ;
for (i=1; i<=10; i++)

a[i] = 0;

This example, intended to set the elements of a to zero, has an unex-
pected side effect. Because the comparison in the for statement is i<=10
instead of i < 10, the nonexistent element number 10 of a is set to zero,
thus clobbering the word that follows a in memory. If this program is
run on a compiler that allocates memory for variables at decreasing
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addresses, the word after a turns out to be i. Setting i to zero makes the
loop into an infinite loop.

Although C arrays can trouble the neophyte, their particular design is
actually one of the language's greatest strengths. Appreciating this
requires some explanation.

Among common programming errors, the hardest to find are usually
fencepost errors, also called off-by-one errors. The problem given in exer-
cise 0.2 (page 3) gives fencepost errors their name; it asks how many fen-
ceposts 10 feet apart it takes to support 100 feet of fence. The "obvious"
answer is to divide 100 by 10 to get 10, but of course this is wrong: the
right answer is 11.

Perhaps the easiest way to see this is to note that it takes two fen-
ceposts to support 10 feet of fence: one at each end. Another way to view
the problem is to realize that each segment has a post at its left. This
accounts for all but one of the posts: the one at the right of the rightmost
segment.

These two ways of solving this problem suggest two general princi-
ples for avoiding fencepost errors:

1. Extrapolate from a trivial case.

2. Count carefully.

With all this in mind, let's look at counting ranges of integers. For
instance, how many integers x are there with x ~ 16 and x ~ 37? That is,
how many elements are in the sequence 16, 17, ..., 37? It is obvious that
the answer is very close to 37-16, or 21, but is it 20, 21, or 22?

The problem would be trivial if the upper and lower bounds were the
same: there is obviously one integer x with x ~ 16 and x ~ 16, namely 16.
So when the upper and lower bounds match, there is one element in the
sequence.

Call the lower bound 1 and the upper bound h. Then by saying "the
upper and lower bounds match" we are saying that 1=h, or that h -1 =0.
Thus we see that the number of elements in the sequence is h -1 +1,
which, for this example, is 22.

It is the "+1" in h-l+1 that is the source of so many fencepost errors.
It is so tempting to assume that a substring of a string that starts at the
16th character and extends through the 37th character is 21 characters
long. And this suggests a question: might there be some programming
technique that makes these errors less likely?

There is, and a single rule covers it: Express a range by the first element
of the range and the first element beyond it. In other words, instead of talk-
ing about values of x with x ~ 16 and x ~37, talk instead about values
with x ~ 16 and x < 38. Use inclusive lower bounds and exclusive upper
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bounds. This asymmetry may look mathematically ugly, l;>utit can sim-
plify programming surprisingly:

1. The size of a range is the difference between the bounds. 38-16 is 22,
the number of elements contained between the asymmetric bounds 16
and 38.

2. The bounds are equal when the range is empty. This follows immedi-
ately from (1).

3. The upper bound is never less than the lower bound, not even when
the range is empty.

Asymmetric bounds are most convenient to program in a language
like C in which arrays start from zero: the exclusive upper bound of such
an array is equal to the number of elements! Thus when we define a C
array with 10 elements, 0 is the inclusive lower bound and 10 the
exclusive upper bound for the subscrIpts of that array. It is for that rea-
son that we write

int a [10], i;
for (i = 0; i < 10; i++)

a[i] = 0;

instead of

int a[ 10], i;
for (i = 0; i <= 9; i++)

a[i] = 0;

If C had an Algol- or Pascal-style for statement, that would introduce a
pitfall: what would this mean?

for (i = 0 to 10)
a[i] = 0;

If 10 were an inclusive bound, i would take on 11 values, not 10; if 10
were an exclusive bound, it wouid surprise programmers raised on other
languages.

Another way to think of asymmetric bounds is to realize that they
represent the first occupied and first free elements of some sequence:
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available occupied
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available

. inclusive lower bound

exclusive upper bound

This way of looking at things is particularly useful when dealing with
buffers of various sorts. For example, consider a function whose job it is
to collect input of irregular length into blocks of N characters and write
out a buffer-load whtm it becomes full. The declaration for the buffer
might lobk something like this:

#define N 1024
static char buffer[N];

with a pointer variable to mark the current place in the buffer:

static char *bufptr;

What significance shall we attach to bufptr? It may be ~empting to
establish that bufptr always points at the last occupied character in the
buffer, but our preference for asymmetric bounds causes us to make
bufptr represent the first free character in the buffer.

With that convention; we put a character c into the buffer by writing

*bufptr++ = c;

and when we are done, bufptr again points at the first free character.
Our observations about asymmetric bounds show :us that the buffer

will be empty when buf})tr an.d &buffer [0] are equal, so we initially
say the. buffer is empty by writing

bufptr = &buffer[O];

or, more simply,

bufptr = buffer;

The number of characters in the buffer at any time is just
bufptr-buffer, so we can test if the buffer is completely full by seeing
if this expression is equal to N. Since the buffer is completely full when
bufptr-buffer and N are equal, the number of characters available in
the buffer must therefore be N- (bufptr-buffer).

With these preliminary observations out of the way, we are ready to
write our program, which we will call bufwri teo Its arguments are a
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poirtter to the first character to be written and a count of the number of
characters to write: We assume we can call a function flushbuffer to
write out the contents of the buffer and that flushbuffer will reset
bufptr to the beginning of the buffer.

void
bufwrite(char *p; inton)
{

while (--n >= 0) {
.if (bufptr == &buffer[N))

flushbuffer() ;
*bufptr++ = *p++j

Iterating the expression - -n> =0 is one way of doing something n times.
To see this, look at a trivial case such as n =1.t Since the loop is executed
n times and each .iteration fetches a single character from the input
buffer, we khow we will handle every input character ~nd no ~ore. .

Note the comparison with .&buffer[N): there is no s,uch element!
Elements of buffer are numbe.red from 0 to N-1. We have written

if .(bufptr == &buffer[N))

instead of the effectively equivalen~

if (bufptr > &buffer[N-1))

because we are sticking to. our principles .about asymmetric bounds: we
want to compare bufptr to the address of the first character following the
buffer, and &bufptr [N) is precisely that address. But how can it make
sense to refer to an element that doesn't exist?

Fortunately we do not have to refer to this element, merely to its
address, arid that address does. exist in every C implementation we have
encountered. Moreover, ANSI C.explicitly permits this usage: the address
of the nonexistent element just past the end of an array may be. taken and
used for assignment and comparison purposes. Of course it is illegal
actually to refer to. that element!

Our progr~m works as written, but we can speed it up. Optimization
is generally beyond the scope of this book, but this particular case is
worth examining for its counting aspects.

t On most C implementations, --n>=O is likely to be at least as fast as the equivalent n-->O
and faster on some. The first expression subtracts one from n and compares the result to
zero. The second saves n, subtracts one from n, and then compares the saved value to zero.
Some compilers will be clever enough to realize this can be done more efficiently than writ-
ten, but why count on it?
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Most of this program's overhead is there because each' iteration of the
loop tests two things: whether the loop count has been exhausted and
whether the buffer is full. This in turn is the result of moving one char-
acter at a time into the buffer.

Let us assume that we have a way of moving k characters at a time.
Most C implementations (and ail correct ANSIC implementations) have a
function called memcpy that does this; this function is often implemented
in assembly language for speed. The function is easy to write for those
implementations that don't have it:

void
memcpy(char *dest, const char *source, int k)
{

while (--k >= 0)
*dest++ = *sQurce++;

We can make bufwrite take advantage of memcpy by moving charac-
ters into the buffer in chunks instead of one at a time. Each iteration of
the ioop will therefore flush the buffer if needed: calculate how many
characters to move, move them, and update counters appropriately:

void
bufwrite(char *p, int n)
{

wpile (n > 0) {
bit k, rem;
if (bufptr == &buffer[N])

flushbuffer ();
rem = N - (bufptr - buffer);
k =.ri> rem? rem: n;
memcpy(bufptr, P. k);
bufptr += k;
p += k;
n -= k;

Many programmers hesitate to write this sort of program for fear of get-
ting it wrong. Others are fearless - and.do get it wrong. Indeed, this
sort of thing is tricky and should not be attempted without good reason.
But if there is a good reason, it is important to understand how to do it.
And by checking trivial cases and counting carefully, it is possible to be
confident of getting it right.

At entry to the loop, Ii is the number of characters to be placed in the
buffer. Thus it is clearly right to continue as long as n>O. Each time
through the loop, we are going to transfer some number k of characters
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into the buffer. The last four statements manage that transfer by (1)
copying k characters starting at the first free character in the buffer, (2)
advancing the first free location by k characters, (3) advancing the input
pointer by k characters, and (4) decreasing the number of characters to
write by k. It is easy to see that these statements do the right thing.

The beginning of the loop retains the test from the previous version:
if the buffer is full, flush it (and reset bufptr). Thus after this test, there
is guaranteed to be some room in the buffer.

The only hard part, then, is determining k, which should be the larg-
est number of characters that can safely fit into the buffer. That value is
the smaller of two quantities: the number of characters remaining in the
input (n) and the number of free characters remaining in the buffer
(which we will place in rem).

There are two ways to calculate rem. Our example shows one: the
number of characters presently available is the number of characters
occupied (bufptr-buffer) subtracted from the total number of charac-
ters in the buffer (N), or N-(bufptr-buffer).

The other way is to view the empty part of the buffer as an interval
and calculate its size directly. If we do this, then bufptr represents the
beginning of the interval and buffer+N (equivalent to &buffer[N])
represents (one character past) the end. This viewpoint thus says that
there are (buffer+N) -bufptr characters still available in the buffer. A
little reflection shows that

(buffer+N)-bufptr

and

N-(bufptr-buffer)

are equivalent.
Here is another counting example: given a program that generates

integers in some sequence, print those integers in columns. More pre-
cisely, the output should consist of some number of pages, each of which
contains NeOLS columns of NROWSelements each. Consecutive values are
obtained by reading down the columns, not across the rows.

We will make several simplifying assumptions to concentrate on the
counting aspects of the problem. First, we assume that our program will
be expressed as a pair of functions called print and flush. Some other
program is responsible for deciding what values to print; that program
will designate values to be printed by calling print each time a new
value is known and flush once after the last value has been generated.
Second, we will assume that we can use three functions to do our print-
ing: printnum prints a single value at the current place on the page,
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printnl begins a new line, and printpage begins a new page. Every
line must end with a call to printnl, even the last one on a page. These
functions fill each output line from left to right; once a line has been
printed there is no way to back up or change it.

the first thing to realize about this problem is that we cannot get by
without a buffer of some sort: we do not know the contents of the first
element of the second column until after we h~ve seen all the elements
of the first column, but we must print the entire first row before we can
even print the second element of the first column!

How large must this buffer be? At .first glance it seems to have to be
big enough to contain an entire page full of numbers, but deeper reflec-
tion argues that this is not so: we can always print an element of the last
column as soon as we have it, because by detinition we have all the
information we need to do so. Thus ottr buffer can omit the last column:

#define BUFSIZE (NROWS*(NCOLS-1))
static int buffer[BUFSIZE];

We declare the buffer static to forestall the possibility of its being
accessed by some other part of this program. Section 4.3 (page 56) says
more about static declarations.

Our strategy for print is going to be roughly as follows: put the
value in the buffer unless the buffer is already full, in which case we
must print the entire line containing this value. When printing that line
empties the buffer, we have ended a page.

Note that the values do not come out of the buffer in the same
sequence they went in: we receive values by columns but must print
them by rows. That leaves open the question of whether rows or
columns should be adjacent in the buffer; we arbitrarily choose to make
the elements of a column adjacent. That means that incoming elements
will simply go into consecutive locations in the buffer, but they will
come out in a more complicated fashion. To keep track of elements on
their way into the buffer, therefore, a simple pointer will suffice. We ini-
tialize it to point at the first element in the buffer:

static int *bufptr = buffer;

At this point we have a partial idea about the structure of print. It takes
an integer argument and puts it into the buffer if the buffer has room.
Otherwise it does something mysterious. Let's write down what we have
so far:
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void
print(int n)
{

if (bufptr == &buffer[BUFSIZE)
I * do something mysterious *1

} else
*bufptr++ = n;

CHAPTER 3

This "something mysterious" is to print all the elements in the current
row, increment the notion of the current row, and start a new page if
we've printed all the rows on the current one. For this, we evidently
need to remember the row number; we'll do that with a (local) static
variable row.

How do we print all the elements in the current row? This looks
messy at first, bilt is actually very easy if looked at properly. We know
that the first element in row number row is just buffer [row], and that
element buffer [row] exists because we wouldn't be here if the first
column were not completely full. We also know that adjacent elements
in a row are separated by NROWS elements. Finally, we know that
bufptr points just beyond the last occupied element in the buffer. Thus
we can print all the elements in the buffer that are in the current row
with the following loop:

int *p;
for (p buffer+row; p < bufptr; p += NROWS)

printnwn(*p) ;

Here we write buffer+row instead of &buffer[row] for compactness.
The rest of the "something mysterious" is simple: write the current

number, end the row, and start a new page if we've just printed the last
row:

printnwn(n) ;
printnl();
if (++row == NROWS) {

printpage ();
row:: 0;
bufptr = buffer;

}

Thus the entire print function looks like this:
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void
print(int n)
{
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if (bufptr == &buffer[BUFSIZE])
static int row = 0;
int *p;
for (p = buffer+row; p ~ bufptr;

p += NROWS)
printnum(*p) ;

printnum(n) ;
printnl();
if (++row == NROWS) {

printpage();
row = 0;
bufptr = buffer;

} else
*bufptr++ n;

Now we are almost dpne: we just need to write flush, whose job is to
print the partial page that remains in the buffer. This is done by using
what is essentially the same inner loop as printnum, repeating it for
each row:

void
flush( )
{

int row;
for (row = 0; row < NROWS; row++) {

int *p;
for (p = buffer+row; p < bufptr;

p += NROWS)
printnum(*p) ;

printnl();
}

printpage ();

This version of flush is a little literal-minded: if the last page consists
only of a single (partial) column, it is padded out to its full length with
blank lines. In fact, if the last page is empty, it will be printed anyway,
consisting entirely of blank lines. While this is technic<illy within the
problem definition, aesthetic considerations suggest that we should stop
printing as soon as we have run out of things to print. We do this by cal-
culating how many items are in the buffer. If there is nothing to print,
we don't start a new page, either:
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int k
if (k >
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voic}
flul:!h( )
{

if (k >
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bufptr - buffer;
NROWS)
k = NROWS;
0) {

for (row = 0; row < k; rowt+) {
int *Pi
for (p = buffer+row; p < bufptr;

p += NROWS)
printnum(*p) ;

printnl() ;
}

printpage ();

3.7 Order of evaluation
Section 2.2 (page 17) discussed precedence. Order of evaluation is a dif-
ferent matter entirely. Precedence is what says that the expression

is interpreted as

a + .(b * c)

and not as

(a + b) * c
Order of evaluation is what guarantees that

if (count 1=0 &~ ;sum/count < smallaverage)
printf ("average < %g\n". smallaverage);

will not cause a "divide by zero" error even if count is zero.
Some C qperators always evaluate their operands in a known, speci-

fied order. Others don't Consider, for in~tance, the following expres-
sion:

a < b && c < d

The language defi~ition states that a<b will be evaluated first. If a is
indeed less than b, c<d must then be evaluated to determine the value of
the ~h~leexpression. On the other hand, if a is greater than or equal to
b, theh c~d is not evaluated at all. .

. \:'" ,
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• To evaluate a<b, on the other hand, the compiler .mayevaluate either
a or b first. On some machines, it may even evaluate them in .parallel.
"Only the four C operators &&, ::, ?:, and , specify an order of

evaluation. && and :: evaluate the left operand first, and the .right
operand only if necessary. The?: operator t~kesthree operands: a?b: c
evaluates a first, and then evaluates eitherb or c, depending on the
value of a. The , operator evaluates its left pperand and discards its
value, then evaluates its right operand.t

All other C operators evaluate their operands in undefined order. In
particular, the assignment operators do not make any guarantees about
evaluation order. .

The && and :: operators are important for ensuring that tests are
applied in the right sequence. For instance, in

if (y 1= 0 && x/y > tolerance)
complain ( ) ;

it is essential to evaluate x/y only if y is nonzero.
The following way of copying the first n elements of array x to array

y is incorrect becau~e.it assumes too much about order of evaluation:

i = 0;
while (i < n)

y[i] = x[i++];

The trouble is that there is no guarantee that the address of y [ i) will be
evaluated before i is incremented. On some implementations, it will; on
others, it won't. This"similar version fails for the same reason:

i = 0;
while (i < n)

y[i++] = x[i];

On the other hand," this one will work fine:

i = 0;
while (i < n) {

y[i] = x[i];
i++;

}

This can, of courSe, be abbreviated:

t.Commas that separate function arguments are not comma operators. For example, x and y
are fetched in undefined order in f(x,Y}, but not in g( (x,Y)). In the latter example, g
has one argument. The value of that argument is determined by evaluating x, discarding its
value, and then evaluating y.
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for (i = 0; i < n; i++)
y[i] = x[i];

3.8 The &&, ::, and I operators

CHAPTER 3

C has two classes of logical operators that are sometimes interchangeable:
the bitwise operators &, I, and ~, and the logical operators &&, I I, and I.
A programmer who substitutes one of these operators for the correspond-
ing operator from the other class may be in for a surprise: the program
may appear to work correctly after such an interchange but may actually
be working only by coincidence.

The &, I, and ~ operators treat their operands as a sequence of bits and
work on each bit separately. For example, 10&12 is 8 (1000 binary),
because & looks at the binary representations of 10 (1010 binary) and 12
(1100 binary) and produces a result that has a bit turned on for each bit
that is on in the same position in both operands. Similarly, 10 I 12 is 14
(1110 binary) and ~10 is -11 (11 ... 110101 binary), at least on a 2's
complement machine.

The &&, I I, and 1 operators, on the other hand, treat their arguments
as if they are either "true" or "false," with the convention that 0
represents "false" and any other value represents "true." These operators
return 1 for "true" and 0 for "false," they never return anything but 1 or
0, and the && and I I operators do not even evaluate their right-hand
operands if their results can be determined from their left-hand
operands.

Thus I 10 is 0 because 10 is nonzero, 10&&12 is 1 because both 10
and 12 are nonzero, and 10: I 12 is also 1 because 10 is nonzero. More-
over, 12 is not even evaluated in the latter expression, nor is f () in
10: If ().

Consider the following program fragment to look for a particular ele-
ment in a table:

i = 0;
while (i < tabsize && tab[i] 1= x)

i++;

The idea behind this loop is that if i is equal to tabsize when the loop
terminates, then the element sought was not found. Otherwise, i con-
tains the element's index. Note the use of asymmetric bounds in this
loop.

Suppose that the &&were inadvertently replaced by &:
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i = 0;
while (i < tabsize & tab[i] 1= x)

i++;
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Then the loop would probably still appear to work, but would do so only
because of two lucky breaks. .

The first is that both comparisons in this example are of a kind that
yield 0 if the condition is false and 1 if the condition is true. As long as
x and yare both 1 or 0, x&y and x&&ywill always have the same value.
However, if one of the comparisons were to be replaced by one that uses
some nonzero value other than 1 to represent "true," then. the loop
would stop working. .

The second lucky break is that looking just one element off the end of
an array is usually harmless, provided that the program doesn't change
that element. The modified program looks past the end of the array
because &, unlike &&,must always evaluate both of its operands. Thus in
the last iteration of the loop, the value of. tab [i) will be fetched even
though i is equal to tabsize. If tabsize is the number of elements in
tab, this will fetch a nonexistent element of tab.

Recall that in Section 3.6 (page 40) we said that it was legal to take the
address of the element one past the end of an array. Here we are actually
trying to access the element itself; the effect of that is undefined and very
few C implementations will diagnose the error.

3.9 Integer overflow
C has two kinds of integer arithmetic: signed and unsigned. There is no
such thing as overflow in unsigned arithmetic: all unsigned operations
are done modulo 2", where n is the number of bits in the result. If one
operand of an arithmetic operator is signed and the other unsigned, the
signed operand is converted to unsigned and overflow is still impossible.
But overflow can occur if both operands are signed; the result of an over-
flow is undefined. It is not safe to assume anything about the result of an
operation that overflows.

Suppose, for example, that a and b are two int variables known to be
nonnegative and you want to test whether a+b might overflow. One
obvious way to do it is:

if (a + b < 0)
complain( );

This does not work. Once a+b has overflowed, all bets are off as to what
the result will be. For example, on some machines, an addition operation
sets an internal register to one of four states: positive, negative, zero, or
overflow. On such a machine, the compiler would have every right to



50 SEMANTIC PITFALLS CHAPTER 3

implement the example given above by adding a and band' checking
whether this internal register was in negative state afterwards. If the
operation overflowed, the register would be in overflow' state, and. the
test would fail.

One correct way of doing this is to .convert a and b to unsigned:

if «unsigned) a + (unsi~ned) b > INT_MAX)
complain ();

Here, INT _MAX is a defined constant that represents' the largest possible
int value. ANSI C defines INT_MAX in <limits.h>; you may have to
define it yourself on other implementations.

Another possibility doesn'! involve unsigned arithmetic at all:

if (a > INT_MAX - b)
complain ();

3.10 Returning a value from main

The simplest possible C program:

main( )
{
}

contains a subtle error. Like any other function, main is presumed to
yield an int value if no other return typ~ is d~c1ared for it. But no
return value ts given in this program.

This generally causes no p.arm. An int.function that fails to return a
value .usually implicitly return.s some garbage integer. As long as no one
uses this value, it doesn't matter.

However, there are some contexts in which the value returned from
main does matter. Many C implementations use the value returned from
main to tell the operating system whether the program succeeded or
failed. Typically, a 0 return indicates success and any other value indi-
cates failure. A program that doesn't return any value from main thus
probably appears to have failed. This may cause surprising results when
'used with things like software administration systems that care about
whether programs fail after they have invoked them.

Strictly speaking, then, our minimal C program should be written this
way:
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rnaiI1()
{

or this way:

rnai~()
{

r~turn 0;

exit( 0);
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and the classic "hello world" program should look like this:

#include <stdio.h>

rnain()
{

printf( "Hello wQrld\n");
return 0;

Exercise 3-1. Suppose it were illegal even to generate the address of an
array element that is out of bounds. How would the bufwri te programs
in Section 3.6 (page 39) look? 0

Exercise 3-2. Compare the last version of flush shown in Section 3.6
(page 45) wit~ this on~:

void
flush( )
{

int row;
int k bufptr - buffer;
if (k > NROWS)

k = NROWS;
for (row = 0; row < k; row++) {

int *p;
for (p = buffer+row; p < bufptr;

p += NROWS)
printnurn(*p);

printn1( );
}

if (k > 0)
printpage ();

o
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Exercise 3-3. Write a function to do a binary search in a sorted table of
integers. Its input is a pointer to the beginning of the table, a count of
the elements in the table, and a value to be sought. Its output is a
pointer to the element sought or a NULL pointer if the element is not
present. 0
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A C program may consist of several parts that are compiled separately
and then bound together by a program usually called a linker, linkage edi-
tor, or loader. Because the compiler normally sees only one file at a time,
it cannot detect errors whose recognition would require knowleqge of
several source program files at once. Moreover, the linker on many sys-
tems is beyond the control of the C implementer and thus cannot readily
detect C errors either.
Some C implementations, but not all, have a program called lint that

catches many of these errors. It is impossible to overemphasize the
importance of using such a program if it is available.
In this chapter, we look at a typical linker, note how it deals with C

programs, and draw conclusions about errors that are likely to result from
the nature of linkers.

4.1 What is a linker?

An important idea in C is separate compilation: several programs can be
compiled at different times and bound together. But the linker is
separate from the C compiler and can't know too much about the details
of C; how can it know how to combine C programs? Although linkers
don't understand C, they do understand machine language and memory
layout, and it is up to each C compiler to translate C programs into terms
that make sense to the linker.
A typical linker combines several object modules produced by a com-

piler or assembler together into a single entity, sometimes called a load
module or an executable file, that the operating system can execute directly.
Some of those object modules are given directly as input to the linker;
others are fetched on demand from a library of object modules containing
printf and similar things.
A linker typically views an object module as containing a collection of

external objects. Each external object represents the contents of some part

53
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of the machine's memory and is identified by an external name. Thus
every function not declared static is an external object, as is every
external variable not declared static. Some implementations make
static functions and variables into external objects as well by
transforming their names somehow so that they do not clash with identi-
cally named variables in other source program files.

Most linkers forbid two different external objects in a single load
module to have the same name. However, several object modules to be
combined into a single load module might contain identically-named
external objects. One important job of a linker is to handle these name
conflicts.

The simplest way to handle such a conflict is to prohibit it. This is
surely correct if the external objects are functions: a program that con-
tains two different functions with the same name should be rejected. The
problem is harder, though, if the objects are variables. Different linkers
handle that situation in different ways; we will see the significance of
this later.

With this information, it begins to become possible to imagine how a
linker works. Its input is some collection of object modules and libraries.
Its output is a load module, which it builds as it reads its input. For each
external ()bject in each object module, it checks whether an object of that
name already appears in the load module. If not, it adds it. If so, it deals
with the conflict somehow.

In addition to external objects, object modules may contain references
to external objects in other modules. For example, an object module
resulting from a C program that calls printf will contain a reference to
the printf function, which is presumably an external object in a library
somewhere. As it builds the load module, the linker must keep track of
these external references. When it reads an object module, it resolves all
the references to external objects defined in that module by noting that
those objects are no longer undefined.

Because linkers don't know much about C, there are many errors they
cannot detect. If your implementation has a lint program, use it!

4.2 Declarations vs. definitions

The declaration

int a;

appearing outside of any function body is called a definition of the exter-
nal object a; it says that a is an external integer variable and also allocates
storage for it. Because it doesn't specify an initial value, the value is
assumed to be 0 (on systems whose linkers don't guarantee this for
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programs in other languages, is is up to the C compiler to utter the
appropriate incantations to the linker to ensure it).

The declaration

int .a = 7;

is a definition of a that includes an explicit initial value. Not only does
it allocate memory for a, but it says what value that memory should have.

The declaration

extern int a;

is not a definition of a. It still says that a IS an external integer variable,
but by including the extern ~eyword; it explicitly says that the storage
for a is allocated somewhere else. Frqm the linker's viewpoint, such a
declaration is a reference to the' external object a but does not define it.
Because this declaration explicitly refers to an external object, it has the
same meaning even inside a function. The following function srand
stores a copy of its integer argument in the external variable
random_seed:.

void
srand(int n)

extern int random_seed;
random_seed = n;

Every external object must be defined somewhere. Thus a program
that includes

extern int a;

must say

int a;

somewhere else, either in the same program file or a different one.,
What about a program that defines the same external variable more

than once? That is, suppose

int a;

appears in each of two or more separate source program files? Or what if

int a = 7;

appears in one file and

int a = 9;

appears in another? Here systems vary. The strict rule is that every
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external variable must be defined exactly once. If each of several external
definitions supplies an initial value, such as

int a = 7;

in one file and

int a = 5;

in another, most systems will reject the program. But if an external vari-
able is defined in several files without an initial value, some systems will
accept the program and others won't. The only way to avoid this trouble
in all C implementations is to define each e.xternal variable exactly once.

4.3 Name conflicts and the static modifier
Two external objects with the same name are the same object, even if the
programmer didn't intend it that way. Thus two separate source program
files, each of which contains the definition'

int a;

either represent an error (if the linker prohibits duplicate external vari-
ables) or will share a single instance of a whether they wanted to share a
or not.

This is true even if one of the definitions of a is in the system library.
Of course, an intelligently designed library will not define a as an exter-
nal name, but it is not easy to know all the names that the library does
define. Names like read and write are easy to guess, but others might
not be so easy.

ANSI C makes it easier to avoid conflicting with library names by list-
ing all the functions that might possibly cause such conflicts. Any library
function that calls another library function not on the list must do so by a
"hidden name." This allows a programmer to define a function called,
say, read without worrying that getc will call that read instead of the
system function. But most C implementations do not yet behave this
way, so these conflicts are still a problem.

One useful tool for reducing conflicts of this sort is the static
modifier. For example, the declaration

static int a;

means the same thing as

int a;

within a single source program file, but a is hidden from other files. Thus if
there are several functions that need to share a collection of external
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objects, put all the functions into a single file and declare the objects they
need as static in the same file.

This applies to functions too. If a function f calls a function g, and
only f needs to be able to call g, we can put f and g in the same file and
make g static:

static int
g(int x)
{

void f()
. {

1* more stuff *1
b = g(a);

We can have several files, each with its own function called g, as long as
all of them, or all but one, are declared static. Thus a function that
will be called only by other functions in the same file should always be
declared as static to avoid inadvertent collisions.

4.4 Arguments; parameters, and return values

Every C function has a list of parameters, each of which is a variable that
is initialized as part of calling the function. This function has one int
parameter:

int
abs(int n)
{

return n<O? -n: n;

For some functions, the list of parameters is empty:

void
eatline()
{

int c;
do c = getchar();
while (c I=EOF && c 1= '\n~)j

A function is called by presenting it with a list of arguments. In this
example, a-b is the argument to abs:
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if (abs(a-b) > n)
printf("difference is out of range\n");

CHAPTER 4

A function with an empty parameter list is called with an empty argu-
ment list:

eat line ( );

Every C function also has a result type, which is either void or the type
of the result that the function yields. Result types are easier to under-
stand than argument types, so we will discuss them first.

There is no' trouble with result types if every function is defined or
declared before its first call in every file that calls it. For example, consider
a function square that squares its double argument:

double
square(double x)
{

return x * x;

and a program that uses square:

rnain( )
{

printf ( "%g\n" , square (0.3) ) ;

For this program to work, either square must be defined before main:

double
square(double x)
{

return x * x;

rnain( )
{

printf ( "%g\n" , square (0.3) ) ;

or square must be declared before main:
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~./

double square(double);

main( )
{

printf("%g\n", square(O.3));

double
square(double x)
{

return x * x;

A function called before it is defined or declared is assumed to return
into Thus if main is split off into a file by it~elf:

main( )
{

printf("%g\n", square(O.3));

it will give incorrect results when linked with square because main
assumes that square returns ,m i~t when actually square returns a
double.

What if we wanted to define main and square in two separate files?
There can be only one definition of square. If th~ call and definition
are in different files, the calling file must declare square:

double square(double);

main( )
{

printf ("%g\n" , square (0.3) );

The rules for m~tching arguments with parameters are a little more
complicated. ANSI C allows the programmer to specify the types of func-
tion arguments in declarations:

double square(double)j

says that sq1,1are is a function that takes a double argument and returns
a double result. After this declaration, square (2) is legal; the integer 2
will be converted to double as if the programmer had written
square ( (double) 2) or square ( 2 . 0 ).

If a function has no ~loat, short, or char parameters, it is possible
to omit the parameter types entirely from the functi~n declaration (but
not the definition). Thus even in ANSI C i~ is possible to declare square



60 LINKAGE

this way:

double square();

CHAPTER 4

Doing this relies on the caller to supply the right number of arguments of
appropriate types. Appropriate does not necessarily mean equal: float
arguments are automatically converted to double and r;;hort or char
arguments are converted to into Thus the function

int
isvowel(char c)

'0'
return c

c
'a' II

I I
I I

c == ' e' :: c
c == 'u';

,i' ::

must be declared in every other file that calls it:

int isvowel(char);

Otherwise the caller of isvowel would convert its argument to int,
which would not match its parameter. If isvowel were defined this
way:

int
isvowel(int c)

c == '0'

return c 'a' I I
C 'e' I I

C ' i 'I I -- I I --
I I

C 'u' ;I I --
I I
I I

its callers would not need to declare it, even if calling it with a char
argument.

Pre-ANSI C compilers do not all support this style of declaration.
When using such compile~s, it may be necessary to declare isvowel this
way:

int isvowel ();

and define it this way:

int
isvowel(c)

char c;

c '0':: c == 'u';
return c 'a' :: c == 'e' :: c ,i' ::

For compatibility with prior usage, ANSI C supports this older form of
declaration and definition as well. This raises a problem: if a file that
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calls isvowel cannot declare its parameter type (in order to work on
older compilers), how does the compiler know the parameter is char and
not int? The answer is that the two different definition forms mean dif-
ferent things; the last definition of isvowel above is essentially
equivalent to this:

int
isvowel(int i)
{

char c ij
return c 'a':: c

c-- '0' II c
'e' :: c == 'i' ::
'u' ;

Now that we've seen some of the details of function declarations and
definitions, let's look at some ways to get them wrong. The following
simple program fails for two reasons:

main( )
{

double Sj
S = sqrt(2)j
printf ("%g\n", s) j

The first reason is that sqrt expects a double value as its argument and
gets an int instead. The second is that it returns a double result but
isn't declared that way.

One way to correct it is:

double sqrt(double)j

main( )
{

double Sj
S = sqrt(2)j
printf ("%g\n", s) j

Another way, which works on pre-ANSI compilers as well, is
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double sqrt() j

main( )
{

double s;
s = sqrt(2.0)j
printf("%g\n", s)j

Best of all is

#include <math.h>

main( )
{

double Sj
s = sqit(2.0)j
printf ("%g\n", s) j

CHAPTER 4

This program does not contain any explicit knowledge of the argument
or return types of sqrt: it takes that information instead from the system
header file math.h. On ANSI compilers, this will even ensure that the
argument 2.0 is converted to the proper type; although the example
caters to older compilers by writing the argument as a double rather
than an into

Because the printf and scanf functions may be given arguments of
different types at different times, they are particularly prone to problems.
Here is a spectacular example:

#include <stdio.h>

main( )
{

int ij
char Cj
for (i=Oj i<5j i++) {

scanf( "%d", &c) j
printf("%d ", i)j

printf( "\n") j

Ostensibly, this program reads five numbers from its standard input
and writes

o 1 234

on its standard output. In fact, it doesn't always do that. Ort one



SECTION 4.5

compiler, for example, its output is

o 0 0 0 0 1 234
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Why? The key is the declaration of c as a char rather than as an into
When you ask scanf to read an integer, it expects a pointer to an
integer. What it gets in this case is a pointer to a character. The scanf
function has no way to tell that it didn't get what it expected: it treats its
input as an integer pointer and stores an integer there. Since im integer
takes up more memory than a character, this steps on some of the
memory near C.

Exactly what is near c is the compiler's business; in this case it turns
out to be the low-order part of i. Therefore, each time a value is read for
c, it resets i to zero. When the program finally reaches end of file,
scanf stops trying to put new values into c, so i can be incremented
normally to end the loop.

4.5 Checking external types
Suppose you have a C program divided into two files. One file contains
the declaration:

extern int n;

and the other contains the definition:

long n;

In each case, the declaration is assumed to be outside the body of any
function, so it has external scope.

This is not a valid C program because the same external name is
declared with two different types in the two files. However, many
implementations will fail to detect this error. The compiler handles each
of these program files separately ~ they could have been compiled
months apart. Thus the compiler does not know about the contents of
either of the two files while it is compiling the other. The linker prob-
ably doesn't know anything about C, so it doesn't know how to compare
the types of the two definitions of n.

What actually happens when this program is run? There are many
possibilities:

1. The implementation is clever enough to detect the type clash. One
would then expect to see a diagnostic message explaining that the type
of n was given differently in two different files.

2. You are using an implementation that represents int and long values
the same way internally. This is typically true of machines in which
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32-bit arithmetic comes most naturally. In this case, your program
will probably work as if you had said long (or int) in both declara-
tions. This is a good example of a program that works only by coin-
cidence.

3. The two instances of n require different amounts of storage, but they
happen to share storage in such a way that the values assigned to one
are valid for the other. This might happen, for example, if the linker
arranged for the int to share storage with the low-order part of the
long and every value stored in the long could fit in an into This is
an even better example of a program that works only by coincidence.

4. The two instances of n share storage in such a way that assigning a
value to one has the effect of apparently assigning a different value to
the other. In this case, the program will probably fail.

Thus the programmer is generally responsible for ensuring that all
external definitions of a particular name have the same type in every
object module. Moreover, "the same type" should be taken seriously.
For example, consider a program with this definition:

char filename[] = "/etc/passwd";

in one file and this declaration:

extern char *filename;

in another. Although arrays and pointers are very similar in some con-
texts, they are not the same. In the first declaration, filename is the name
of a character array. Although a statement that refers to the value of
filename will get a pointer to the first element of that array, the type of
filename is "character array," not "character pointer." In the second
declaration, filename is asserted to be a pointer. These two declarations
of filename use storage in different ways; they cannot meaningfully
coexist. The first example looks like this:

while the second one looks like this:
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To correct this'example, change either the declaration or definition of
filename to match the ather. Thus either say

char filename[] = "/etc/passwd";

in one file and

extern char filename[];

in the other or say

'char *filename

in one file and

"/etc/passwd";

extern char *filename;

in the other.
Another easy way to get into trouble with external types is to neglect

to declare the type returned by a function or to declare the wrong type.
For example, recall the program from Section 4.4 (page 61)

main( )
{

double s;
s = sqrt(2);
printf ("%g\n" , s);

This program does not contain a declaration for sqrt; its type. must
therefore be inferred from the context. The rule in.C IS that an otherwise
undeclared identifier followed by an open parenthesis is assumed to be a
function that returns an integer. Therefore, the effect of this program is
precisely the same as if it had been written this way:
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extern int sqrt();

main( )
{

double s;
s = sqrt(2);
printf ("%g\n", s);
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This, of course, is wrong; sqrt returns a double, not an into Thus
the result of this. program is unpredictable. In fact, it may actually appear
to work on some machines! Imagine, for example, a machine that uses
the same registers for integer and floating-point return values .. Such a
machine would take the bits it gets from sqrt and pass them on to
printf without looking at them. If printf gets the right bits, it may
well print the right answer. Some machines store integers and pointers
in different registers; it is possible. for this kind of mistake to cause
failure on such a machine even if no floating-point arithmetic is
involved.

4.6 Header files
One good way to avoid many problems of this sort is to adopt a simple
rule: declare each external object in one place only. That place will usually be
in a header file, which should be included by every module that uses that
external object. In particular, it should be included by the module that
defines the object.

For example, look again at our filename example. This might be part
of a program with several modules, each of which needs to know the
name of a particular file. We want to be able to change that name in
every module by changing it in only one place. We do this by creating a ,
file called, say, file. h, which contains the declaration:

extern char filename[];

Every C source file that wants to use this external object should say:

#include "file.h".

Finally, we choose one C source file to give filename its initial value.
We might call it file. c:

#include "file.h"
char filename [] =." /etc/passwd" ;

Notice that file. c actually contains two declarations for filename:
after expanding theirtclude statement, file. c looks like this:
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extern char filename[]j
char filename[] = "/etc/passwd"j
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This is legal as lo~g as all the declarations are consistent and at most one
of the declarations is.a definition.

Notice the effect of this. The type of filename is declared in
file. h, so it is automatically stated correctly in every module that
includes file. h. The file. c definition module includes file. h so the
type in the definition automatically matches the type in the declaration.
If all this stuff compiles, the types must be right!

Exercise 4-1. Suppose a program contains the declaration

long foo;

in one file and

extern short fooj

in another. Suppose further that assigning a smali value, say 37, to the
long version of faa results in giving the short version the value 37 as
well. What likely inference follows about the hardware? What if the
short version becomes 0 instead? 0

Exercise 4-2. Here's one of the incorrect programs from Section 4.4 (page
61) after simpiification:

#include <stdio.h>

main( )
{

printf ("%g\n", sqrt (2) );

On some systems, this will print

%g

Why? 0
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Every useful C program must use library functions because C does not
have any input-output statements. The ANSI C standard recognizes this
by defining a large collection of standard library routines that are
expected to be made available by every C implementation. This collec-
tion is not complete. For example, virtually every C implementation has
functions called read and write for doing "low-level" I/O, but these
functions do not appear in the ANSI standard. Moreover, not all stan~
dard functions are part of every C implementation - ANSI C is too new
for that.
Most library routines cause little trouble: they are straightforward

enough that people seem to get them right most of the time. However,
there are a few cases where some widely-used library functions behave in
ways their users might not expect. In particular, programmers often seem
to have trouble with the details of the printf family of functions and
the varargs . h facility for writing functions with variable argument lists.
The Appendix describes these two facilities, as well as the stdarg. h
facility (the ANSI C version of varargs. h) in detail.
Perhaps the best piece of advice about using library functions is to use

system header files wherever possible. When the author of a library has pro-
vided a header file that accurately describes the functions in that library,
it is just plain silly not to use it. This is especially important in ANSI C,
where these headers include declarations of argument types as well as
result types. In fact, there are some cases in ANSI C where use of system
header files is required in order to be assured of getting the right result.
The rest of this chapter explores some problems that programmers

seem to have with a few common library functions.

69
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5.1 getchar returns an integer

Consider the following program:

#include <stdio.h>

main( )
{

char c;

while ((c = getchar()) 1= EOF)
putchar (c) ;
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The getchar function returns the next character from the standard
input file, or EOF (a value, defined in stdio. h, which is distinct from
any character) if there is no input left. Thus this program looks like it
should copy its standard input to its standard output. In fact, it doesn't
quite do this.

The reason is that c is declared as a character rather than as an
integer. This means that it is impossible for c to hold every possible
character as well as EOF.

Thus there are two possibilities. Either some legitimate input charac-
ter will cause c to take on a value that after truncation is the same as
EOF, or it will be impossible for c to have the value EOF at all. In the
former case, the program will stop copying in the middle of certain files.
In the latter case, the program will go into an infinite loop.

Actually, there is a third case: the program may appear to work by
coincidence. Although the result of getchar is truncated to a character
value when it is assigned to c, and although the operand of the com-
parison is supposed to be the truncated value of c and not the result of
getchar, surprisingly many compilers do not implement this expression
correctly. They properly assign the low-order bits of the value of
getchar to c. However, instead of then comparing c to EOF, they com-
pare the entire value of getchar! A compiler that does this will make
the sample program shown above appear to work "correctly."

5.2 Updating a sequential file

The standard I/O library on many systems allows a single file to be open
simultaneously for input and output:

FILE Hp;
fp = fopen(file, "r+");

This example opens the file whose name is indicated by the variable
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file with the intent of both reading and writing it.
Once this has been done, one would think it should be possible to

intermix read and write operations freely. Unfortunately, because of
efforts to maintain compatibility with programs written before this option
became available, this is not so: an input operation may never directly
follow an output operation or vice versa without an intervening call to
fseek .
. The following program fragment appears to update selected records in

a sequential file:

FILE *fp;
struct record reCj

while (fread((char *) &rec, sizeof(rec), 1, fp) 1) {
do something to rec
if (rec must be rewritten) {

fseek(fp, -(long)sizeof(rec), 1);
fwrite((char*)&rec, sizeof(rec), 1, fp);

It looks reasonable enough at first glance: &rec is carefully cast to
char * to pass to fread and fwri te, sizeof (rec) is cast to long
(fseek demands a long second argument because an int may not be
large enough to contain the size 6f a file; sizeof returns an unsigned
value so it is impossible to negate it without first casting it to a signed
type). But it still fails, and may fail very subtly indeed.

The problem is that if a record is rewritten - that is, if the fwri te
call is executed - the next thing done to the file is the tread at the
beginning of the loop. This doesn't work because there is no intervening
fseek. The solutionis to rewrite it this way:

while (fread((char *) &rec, sizeof(rec), 1, fp) 1) {
do something to rec
if (rec must be rewritten) {

fseek(fp, -(long]sizeof (rec), 1);
fwrite((char *)&rec, sizeof{rec), 1, fp)j
fseek(fp, OL, 1);

The second fseek appears to do nothing, but it puts the file into a state
where it can now be read successfully.
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5.3 Buffered output and memory allocation

CHAPTER 5

When a program produces output, how important is it that a human be
able to see that output immediately? It depends on the program.

For example, if the output is going to a terminal and is asking the per-
son sitting at that terminal to answer a question, it is crucial that the per-
son see the output in order to be able to know what to type. On the
other hand, if the output is going to a file, and thence to a line printer, it
is only important that all the output get there eventually.

It is often more expensive to arrange for output to appear immediately
than it is to save it up for a while and write it later on in a large chunk.
For this reason, C implementations typically afford programmers some
control over how much output is to be produced before it is actually writ-
ten.

That control is usually vested in a library function called setbuf. If
buf is a character array of appropriate size, then

setbuf(stdout, buf);

tells the I/O library that all output written to stdout should henceforth
use buf as an output buffer, and that output directed to stdout should
not actually be written until buf becomes full or until the programmer
directs it to be written by calling fflush. The appropriate size for such
a buffer is defined as BUFSIZ in <stdio. h>.

Thus, the following program illustrates the obvious way to use
setbuf in a program that copies its standard input to its standard output:

#include <stdio.h>

maine )
{

int c;

char buf[BUFSIZ];
setbuf(stdout, buf);

while «c = getchar()) 1= EOF)
putchar (c) ;

Unfortunately, this program is wrong, for a subtle reason. The call to
setbuf asks the I/O library to use the buffer buf to hold characters on
their way to the standard output. To see where the trouble lies, ask
when buf is flushed for the last time. Answer: after the main program
has finished, as part of the cleaning up that the library does before hand-
ing control back to the operating system. But by that time, buf has
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already been freed!
There are two ways to, prevent this sort of trouble, First, make the

buffer static, either by declaring it explicitly as static:,
static char buf[BUFSIZ]j

or' by .moving the declaration outside the main program entirely.
Another possibility is to allocate the buffer dynamically and never free it:

char *malloc()j
setbuf(stdout, malloc(BUFSIZ»j

If you like sleazy programming techniques, notice that there is no need
here to check if malloe succeeded. If malloe fails, it will return a null'
pointer. This is an acceptable second argument to setbuf; it requests
that stdout be unbuffered. This will work slowly, but it will work.

5.4 Using errno for error detection
Many library routines, especially those that deal w:ith the operating sys-
tem, return a failure indication in an external variable named errno
when they fail. The obvious way to take advantage of this is wrong:

call library function
if (errno)

complain

The trouble is that a library routine that sets errno on error is under no
obligation to clear it in the absence of an error. Thus it would appear
that the following technique would work. It is still wrong:

errno = OJ
call library function
if (errno)

complain

Although library routines are not obliged to clear errno in the absence
of an error, they are not forbidden to set it either. To see why this makes
sense, imagine what might happen inside fopen. When asked to open a
file for output, fopen obliterates the file if it is already there and then
opens it. This might involve calling some other library function to test
for the presence of the file.

Suppose that library function sets errno if the file isn't there. Then
every time fopen opens a file that does not already exist, it has the side
effect of setting errno even though no error has occurred.

Thus when calling a library function, it is essential to test the value it
returns for an error indication before examining errno to find the cause
of the error:
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call library routine
if (error return )

examine errno

5.5 The signal function

CHAPTER 5

Virtually every C implementation includes the signal function as a way
of trapping asynchronous events. To use it, write

#include <signal.h>

to bring in the relevant declarations. To handle a particular signal, write

signal (signal type, handler function) ;

where signal type represents some constant defined in signal. h that
identifies the kind of signal to be caught and the handler [unction is a
function that is to be called whenever the given event occurs.

Signals are truly asynchronous in many implementations. A signal
can occur at literally any point during the execution of a C program. In
particular, it can occur in the middle of some complicated library func-
tion like malloe. Thus it is not safe for a signal handler function to call
any such library function.

For instance, suppose malloe is interrupted by a signal. It is likely
that the data structures malloe uses to keep track of available memory
are only partially updated. If the signal function calls malloe again, the
result may be to corrupt malloe's data structures completely, with conse-
quent mayhem.

For similar reasons, it is generally unsafe to exit from a signal handler
by using longjmp: the signal may have occurred while malloe or some
other library routine had started updating some data structure but not
finished it. Thus it appears that the only safe thing for a signal handler
to do is to set a flag and return, with the assumption that the main pro-
gram will test that flag later and discover that a signal has occurred.

But that is not always safe either. When an arithmetic error, such as
overflow or division by zero, causes a signal, some machines will re-
execute the failing operation after the signal handler returns. There is no
portable way to change the operands that the operation will have if it is
retried. The likely result in that case is therefore to raise the same signal
again immediately. Thus the only portable, reasonably safe thing a signal
handler for an arithmetic error can do is to print a message and exit (by
using either longjmp or exit).

The conclusion to draw from this is that signals can be tricky and int-
rinsically have non portable aspects. The best defense against problems is
to keep signal handlers as simple as possible and group them all together.
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That way it will be easy to change them to suit a new system if needed.

Exercise 5-1. When a program terminates abnormally, the last few lines
of its output are often lost. Why? What can be done about it? 0

Exercise 5-2.. The following program copies its input to its output:

#include <stdio.h>

main( )
{

register int Cj

while ((c = getchar()) 1= EOF)
putchar(c)j

Removing the #include statement from this program causes it to fail to
compile because EOF is undefined. It is poor practice to do this, but sup-
pose we define EOF by hand:

#define EOF -1

main( )
{

register int Cj

while ((c = getchar()) 1= EOF)
putchar (c) j

This program still works on many systems, but on some it runs much
more slowly. Why? 0





CHAPTER 6: THE PREPROCESSOR

The programs we run are not the programs we write: the C preprocessor
transforms them first. The preprocessor gives us ways to abbreviate
things that are important for two major reasons (and several minor ones).
First, we may want to be able to change all instances of a particular

quantity, such as the size of a table, by changing one number and recom-
piling the program. The preprocessor makes that easy, even if the
number appears in many places in the program: define it once as a mani-
fest constant and use it where needed. Moreover, by using the preproces-
sor it is easy to collect the definitions of these constants together to make
them easy to find.
Second, most C implementations impose a significant overhead for

each function call. Thus we may want to define things that look like
functions but do not have the function call overhead. For example,
getchar and putchar are usually implemented as macros to avoid hav-
ing to call a function for each character of input or output.
Useful as macros are, they can easily confuse programmers who do not

realize that macros act on the text of the program. That is, macros provide a
way of transforming the characters that make up C programs; they do not
act on the objects in those programs. Thus it is possible for macros to
make something that looks completely ungrammatical into a valid C pro-
gram, or to transform things that look innocent into monsters.

6.1 Spaces matter in macro definitions
A function without arguments is called by putting parentheses after its
name. A macro without arguments is used merely by mentioning its
name; parentheses are irrelevant. Once a macro has been defined, this
causes no trouble: the preprocessor knows from the macro definition
whether to expect arguments after a call.

Defining macros is a little trickier than calling them. For instance,
does the definition of f in

77
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#define f (X) ((x)-1)

CHAPTER 6

take an argument or not? One can imagine answering either way:
perhaps f (x) represents

((x)-1 )

or perhaps f represents

(X) ((x) -1)

In this case, the latter answer is correct because there is a space between
f and the ( that follows it! Thus, to define f (x) as (( x) -1) one must
write

#define f(x) ((x)-1)

This rule does not apply to mqcro calls, just to macro definitions. Thus
after the last definition above, f (3) and f (3) both evaluate to 2.

6.2 Macros are not functions

Because macros can be made to appear almost as if they were functions,
programmers are so~eHrnes tempted to regard them as truly equivalent.
Thus, one sees thing~ H1<e this: .

#define abs(x) (((x»=O)?(x):-(x»

or:

#define fax(a,b) ((a»(b)?(a):(b»

Notice all the parentheses in the bodies of these macros. They defend
against preceqence problems. For instance, suppose abs had been
defined this way:"

,
#define abs(x) ~>O?x:-x

and imagine th~ result of evaluating abs(a-b). The expression

abs(a-b)

would expand into

a-b>O?a-b:-a-b

which would give the wrong answer: the subexpression -a-b is
equivalent to (-a) -b and not - (a-b) as had been intended. For this
reason, it is a good idea in a macro definition to enclose each parameter
in parentheses. It is also important to parenthesize the entire result
expression to defend against using the macro in a larger expression. Oth-
e~'Wise
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abs(a)+1

would expand into

a>O?a:-a+1

MACROS ARE NOT FUNCTIONS 79

which is clearly wrong: Defining abs correctly:

#define abs(x) «x»O?(x):-(x»

will cause

abs(a-b)

to expand correctly into

«a-b»O?(a-b):-(a-b»

and will cause

abs(a)+1

to expand correctly into

«a»O?(a)i-(a»+1

Even if macro definitions are fully parenthesized, though, an operand
that is used twice may be evaluated twice. Thus in the expression
max ( a ,b), if a is greater than b, a will be evaluated twice: once during
the comparison, and again to calculate the value max yields.

Not only can this be inefficient, it can also be wrong:

biggest = x[O);
i = 1;
while (i < n)

biggest = max(biggest, x[i++);

This would work fine if max were a true function, but fails with max a
macro. To see this, let's initialize .some elements of x:

x[O)
x[ 1)
x[2)

2 .,
3 .,
1•,

Look at what happens during the first iteration of the loop. The assign-
ment statement expands into:

biggest = «biggest»(x[i++)?(biggest):(x[i++));

First, biggest is compared to x[i++]. Since i is 1 and x[1] is 3, the
relation is false. As a side effect, i becomes 2.

Because the relation is false, the value of x[i++] is now assigned to
biggest. However, i is now 2, so the value assigned to biggest is the
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value .0£x [2], which is 1; i is now 3.
One way around these worries is to ensure that the arguments to the

max macro have no side effects:

biggest = x[O];
for (i = 1; i < n; i++)

biggest = max(biggest, x[i]);

Another is to make max a function, or to do the computation by hand:.

biggest = x[O];
for (i = 1; i < n; i++)

if (x[i] > biggest)
biggest = x[i];

Here is another example of the hazards of mIxmg macros and side
effects. Here is a typical definition of the putc macro:

#define putc(x,p) \
(--(p)->_cnt>=O?(*(p)->_ptr++=(x)):_flsbuf(x,p))

The first argument to putc is a character to be written to a file; the
second argument is a pointer to an internal data structure that describes
the file. Notice that the first argument x, which could easily be bound to
something like *Z++, is carefully evaluated only once, even though it
appears in two separate places in the macro body: those two occurrences
are on opposite sides of a : operator.

In contrast, the second argument p, which represents the file on
which to write, is always evaluated twice. Since it is unusual for the file
argument to putc to have side effects, this rarely causes trouble.
Nevertheless, the ANSI standard warns that putc may evaluate its second
argument twice. Some C implementations are less careful: it is possible
to implement a putc that may evaluate its first argument more than once.
If you give putc an argument with side effects, beware of careless imple-
mentations.

As another example, consider the toupper function that appears in
many C libraries. It translates a lower-case letter to the corresponding
upper-case letter while leaving other characters unchanged. If we assume
that all the lower-case letters and all the upper-case letters are contiguous
in the machine's collating sequence (with a possible gap between the
cases), we get the following function:
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tOlJ.pper(int e)
{
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if' (e >= ' a' && e <= ' z' )
c += 'A' - 'a~;

return e;

In most C implementations, the subroutine call overhead is much longer
than the actual calculations, so the implementer is tempted to make it a
macro:

#define toupper(e) \
((e»='a' && (e)<='z'? (e)+('A'-'a'): (e))

This is indeed faster than the function in many cases. However, it will
surprise anyone who tries to use toupper ( *p+ + ).

Another hazard of using macros is that they may generate very large
expressions indeed, consuming more space than their user had intended.
For example, look again at our definition of max:

#define rnax(a,b) ((a»(b)?(a): (b))

Suppose we want to use this definition to find the largest of a, b, c, and
d. If -we write the obvious:

rnax(a,rnax(b,rnax(e,d)))

this expands to:

((a»( ((b»( ((e»(d)?(e): (d)) )?(b): (( (e»(d)?(e): (d)))))?
(a): (( (b»( ((e»(d)?(e): (d)) )?(b): (( (e»(d)?(e): (d))))))

which is surprisingly large. We can make it a little less large by balanc-
ing the operands:

rnax(rnax(a,b),rnax(e,d))

which gives:

( ( ( (a) >(b )? (a) : (b) ) » (( (e )>(d )?Le) : (d) ) )?
( ( (a) > ( b )? (a) : (b) ) ) : ( ( (e) > ( d )? (e) : (d) ) ) )

Somehow, though, it seems easier to write:

biggest = a;
if (biggest < b) biggest b;
if (biggest < e) biggest e;
if (biggest < d) biggest d;
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6.3 Macros are not statements

CHAPTER 6

It is tempting, but surprisingly difficult, to define macros that act like
statements. For example, consider the assert macro. Its argument is an
expression; if that expression is zero it terminates program execution with
an appropriate error message. Making it a macro makes it possible for
the error message to contain the file name and line number of the failing
assertion. In other words,

assert(x>y) ;

should do nothing at all if x is greater than y; otherwise it should stop
the program.

Here is a first try at it:

#define assert(e) if (!e) assert_error( __ FILE __ •__LINE __ )

Whoever uses assert is expected to supply a semicolon, so no semicolon
appears in the definition. The __ FILE __ and __LINE __ macros are built
into the C preprocessor; they expand into the file name and line number
on whic~ they were used.

This definition fails subtly in a straightforward context:

if (x > 0 && y > 0)
assert (x > y);

else
assert (y > x);

This is a logical thing to write, but it expands into something like this:

if (x > 0 && y > 0)
if (I(x > y)) assert_error("foo.c", 37);

else
if (I(y > x)) assert_error("foo.c", 39);

Indenting it to show its actual (as opposed to intended) structure gives
this:

if '(x > 0 && Y > 0)
if (l(x>y))

assert_error("foo.c", 37);
else

if (! (y > x))

assert_error("foo.c", 39);

It is possible to avoid this problem by enclosing the body of the assert
macro in braces:
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#define assert(e) \
{ if (Ie) assert_error( __FILE __ , __LINE __ );

This raises a new problem. Our example now expands into:

if (x > 0 && Y > 0)
{ if (I(x > y)) assert_error("foo.c", 37); };

else
if (I(y > x)) assert_error("foo.c", 39); };

and the semicolon before the else is a syntax error. One solution to this
is to insist that a call to assert not be followed by a semicolon, but
using this looks strange:

y = distance(p, q);
assert(y > 0)
x = sqrt(y);

The right way to define assert is far from obvious: make the body of
assert look like an expression and not a statement:

#define assert(e) \
«void)«e): :_assert_error( __FILE __ , __LINE __ )))

This definition relies on the sequential nature of the : : operator. If e is
true, the value of

LINE )).
can be .determined to be true without evaluating

_assert_error( __FILE __ , __LINE __ )

If e is false,

must be evaluated; calling assert_error will print an appropriate
"assertion failed" message.

6.4 Macros are not type definitions

One common use of macros is to allow the type of several different vari-
ables to be stated in one place:

#define FOOTYPE struct foo
FOOTYPE a;
FOOTYPE b, c;

This lets the programmer change the types of a, b, and c just by chang-
ing one line of the program, even if a, b, and c are declared in widely
different places.
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Using a macro definition for this has the advantage of portability
any C compiler supports it. But it is better to use a type definition:

typedef struct foo FOOTYPE;

This defines FOOTYPE as a new type that is equivalent to struct foo.
These two ways of naming a type may appear to be equivalent, but the

typedef is more general. Consider, for example, the following:

#define T1 struct foo *
typedef struct foo *T2;

These definitions make T1 and T2 conceptually equivalent to a pointer to
a struct foo. But look what happens when we try to use them with
more than one variable:

T1 a, b;
T2 c, d;

The first declaration gets expanded to

struct foo * a, b;

This defines a to be a pointer to a structure, but defines b to be a struc-
ture (not a pointer). The second declaration, in contrast, defines both c
and d as pointers to structures, because T2 behaves as a true type.

Exercise 6-1. Write a macro version of max with integer arguments that
evaluates its arguments only once. 0

Exercise 6-2. Can the "expression"

(xl ((xl-1 l

mentioned in Section 6.1 (page 78) ever be a valid C expression? 0
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C has been implemented by many people to run on many machines.
Indeed, one of the reasons to write programs in C in the first place is that
it is easy to move them from one programming environment to another.
However, because there are many implementers, they do not all

implement precisely the same thing: even the first two C compilers ever
written differed significantly from each other. Moreover, different sys-
tems have different requirements, so it is reasonable to expect C imple-
mentations to differ slightly between one machine and another. Th~
advent of the ANSI standard helps, but is no panacea.
Because the earlyC implementations shared a common ancestry, that

ancestry shaped much of the C library in those implementations. As peo-
ple started implementing C unq~r various operating systems, th~y tried
to make the library behave in ways that would be familiar to program-
mers used to the early implementations.
They did not always succeed. What is more, as more people in dif-

ferent parts of the world started working on different C implementations,
the exact nature of some of the library functions predictably diverged.
Today, a C programmer who wishes to write programs useful in someone
else's environment must know about many of these subtle differences.
Portability is therefore a huge subject. In its general form, it far

exceeds the scope of this book. Mark Horton treats it in detail in his
book, How to Write Portable Software in C (Prentice-Hall, to appear). This
chapter will address only a few of the most common sources of error,
with emphasis on language attributes rather than library attributes.

7.1 Coping with change

As I write this, the ANSI committee is putting the finishing touches on
the new C standard. This standard contains many linguistic ideas not yet
universal in C compilers. Moreover, even though it is reasonable to
expect the vendors of Ccompilers to move to the new standard, it is not

85
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obvious that all C users will quickly upgrade their compilers. New com-
pilers cost money and take time to install. Why replace a compiler that
works? . .

Such change places the author of a C program in a dilemma: should
the program use the new features or not? Using them may make the pro-
grap:t easier to write and less error-prone, but at the cost of making the
progr~m useless on older implementations.

Section 4.4 (page 57) discussed one example of this: the notion of
function prototypes. Recall the square function from that section:.

double
square(double x)
{

return x * x;

As written, this function will not compile on many C ~ompilers, Rewrit-
ing it in the older style makes it more portable, because the ANSI stan-
dard allows the older form as well:

double
square(x)

double x;

return x * x;

This portability carries a cost. Being consistent about the old usage
r~quires that it be declared as follows in a program t~at calls it:

double square();

Leaving out the argument type like this is legal in ANSI C too. Recall
that such a declaration says nothing at all about the argument types.
That means that a call with the wrong argument type will fail quietly:

double square ();

main( )
{

printf("%g\n"; square(3));

Because the declaration of square says nothing about argument types, it
is impossible when compiling main to know that the argument to
square should be double and not into Thus this program will print
garbage. The way to detect problems of this sort is to use the lint pro-
gram mentioned inSection 4.0 (page 53) if it is available.
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If the program ~ad been written this way:

double square(double);

main( )
{

printf ( "%g\n". square (3) ) ;
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then 3 would have been converted automatically from int to double.
Alternatively, the program could have passed a double argument expli-
citly:

double square ( ) ;

main( )
{

printf ( "%g\n". square (3 .0) ) ;

and it would still work. This latter style will work even in older com-
pilers that do not allow function declarations to include argument types.

M~ny portability decisions have this flavor. Should a programmer use
some. new or specialized facility or not? Using it may bring great con-
venience, but only at the cost of cutting off part ofthe potential audience
for the program. .

There are no easy answers to these questions. Programs. tend to last
longer than their authors ever dreamed, even when Written only for. the
authors' own use. Thus it is not enough to do what works now and
ignore the future. Yet we have just seen that trying to be as portable as
possible can be expensive by denying us today's benefits in order to live
with yesterday's tools. The best we can do about decisions like these is to
admit that they are decisions and not let them be made by accident.

7.2 What's in a name?

Some C implementations treat all the characters of an identifier as being
significant. Others quietly chop the tails off long identifiers. Linkers
may impose their own restrictions on the kinds of names they can han-
dle, such as allowing only upper-case letters in external names. When
faced with such a restriction, it is reasonable for a C implementer to force
all external names to upper case. In fact, all ANSI C guarantees is that
the implementation will distinguish external names that differ in the first
six characters. For the purpose of this definition, upper-case letters do
not differ from the corresponding lower-case letters.

Because of this, it is important to be careful when choosing external
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identifiers in programs intended to be portable. Having two functions
named, say, print_fields and print_float would not be a very good
idea, nor would it be wise to have State and STATE.

As a striking example, consider the following function:

char *
Malloc(unsigned n)
{

char *P, *malloc(unsigned)j
p = malloc (n) j

if (p == NULL)
panic ("out of memory") j

return pj

This is a simple way of ensuring that running out of memory will not
go undetected. The idea is for a program to allocate memory by calling
Malloe instead of malloe. If malloe ever fails, the result will be to call
panie which will presumably terminate the program with an appropriate
error message. This makes it unnecessary for the client program to check
every call to malloe itself,

Consider, however, what happens when this function is used with a C
implementation that ignores case distinctions in external identifiers. In
effect, the names malloe and Malloe become equivalent. In other
words, the library function ma110e is effectively replaced by the Ma110e
function above, which when it calls malloe is really calling itself. The
result, of course, is that the first attempt to allocate memory results in a
recursion loop and consequent mayhem, even though the function will
work on an implementation that preserves case distinctions.

7.3 How big is an integer?

C provides the programmer with three sizes of integers: short, plain, and
long, and with characters, which behave as if they were small integers.
The language definition guarantees a few things about the relative sizes
of the various kinds of integer:

1. The three sizes of integers are nondecreasing. That is, a short integer
can contain only values that will also fit in a plain integer and a plain
integer can contain only values that will also fiUn a long integer. An
implementation need not actually support three different sizes of
integers, but it may not make short integers larger than plain integers
or plain integers larger than long integers.

2. An ordinary integer is large enough to contain any array subscript.
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3. The size of a character is natural for the particular hardware.

Most modern machines have 8-bit characters, though a few have 9-bit
characters. However, there is a growing number of implementations
with 16-bit characters, to be able to handle the large character sets of
languages like Japanese.

The ANSI standard requires long integers to be at least 32 bits and
short or ordinary integers to be at least 16 bits. Because most machines
have 8-bit characters, and the most convenient integer sizes for such
machines are 16 and 32 bits, virtually all older C compilers observe these
limits as well.

What does this all mean in practice? The most important thing is that
one cannot count on having any particular precision available. Infor-
mally, one can probably expect 16 bits for a short or an ordinary integer,
and 32 bits for a long integer, but not even those sizes are guaranteed.
One can certainly use ordinary integers to express table sizes and sub-
scripts, but what about a variable that must be able to hold values up to
ten million?

The most portable way to define such a variable is probably to declare
it as long, but in such circumstances it is often clearer to define a "new"
type:

typedef long tenmil;

Moreover, one can use this type to declare all variables of that width and
know that, at worst, one will have to change a single type definition to
get all those variables to be the right type.

7.4 Are characters signed or unsigned?
Most modern computers support 8-bit characters, so most modern C com-
pilers implement characters as 8-bit integers. However, not all compilers
interpret those 8-bit quantities the same way.

The issue becomes important only when converting a char quantity
to a larger integer. Going the other way, the results are well-defined:
excess bits are simply discarded. But a compiler converting a char to an
int has a choice: should it treat the char as a signed or an unsigned
quantity? If the former, it should expand the char to an int by replicat-
ing the sign bit; if the latter, it should fill the extra bit positions with
zeroes.

The results of this decision are important to virtually anyone who
deals with characters with their high-order bits turned on. It determines
whether 8-bit characters are going to be considered to range from -128
through 127 or from a through 255. This, in turn, affects the way a
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programmer will design things like hash tables and translate tables.
If you care whether a character value with the high-order bit on is

treated as a negative number, you should probably declare it as
unsigned char. Such values are guaranteed to be zero-extended when
converted to integer, whereas ordinary char variables may be signed in
one implementation and unsigned in another.

Incidentally, it is a common misconception that if c is a character vari-
able, one can obtain the unsigned integer equivalent of c by writing
(unsigned) c. This fails because when converting a char quantity to
unsigned, it is converted to int first, with possibly unexpected results.

The right way to do it is (unsigned char) c. Converting an
unsigned char to an integer type will give an unsigned int without
going through int first.

7.5 Shift operators

Two questions seem to cause trouble for people who use shift operators:

1. In a right shift, are vacated bits filled with zeroes or copies of the sign
bit?

2. What values are permitted for the shift count?

The answer to the first question is simple but sometimes
implementation-dependent. If the item being shifted is unsigned,
zeroes are shifted in. If the item is signed, the implementation is permit-
ted to fill vacated bit positions either with zeroes or with copies of the
sign bit. If you care about vacated bits in a right shift, declare the vari-
able in question as unsigned. You are then entitled to assume that
vacated bits will be set to zero.

The answer to the second question is also simple: if the item b~ing
shifted is n bits long, then the shift count must be greater than or equal
to zero and strictly less than n. Thus, it is not possible to shift all the bits
out of a value in a single operation. The purpose of this restriction is to
allow efficient implementation on hardware with the corresponding res-
triction.

For example, if an int is 32 bits, and n is an int, it is legal to write
n«31 and n«O but not n«32 or n«-1.

Note that a right shift of a signed integer is generally not equivalent
to division by a power of two, even if the implementation copies the sign
into vacated bits. To prove this, consider that the value of (-1»> 1 can-
not possibly be zero, but (-1) /2 is zero in most implementations. This
suggests that writing a division instead of a shift may result in a surpris-
ingly slow program. For instance, it is equivalent, and much faster, to
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execq.te

mid (low + high) » 1;

instead of

mid = (low + high) / 2;

if low+high is known to be nonnegative.
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7.6 Memory l!lcation zero

A null pointer does not point to any object. Thus it is illegal to use a
null pointer for any purposes other than assignment and comparison.
For example, the value of strcmp(p,q) is undefined if p or q is a null
pointer.

What actually happens in this case varies from one C implementation
to another. Some implementations impose hardware read protection on
location O. A program that misuses a null pointer on such an implemen-
tation will fail immediately. Other implementations allow loc~tion 0 to
be read bu~ not written. In this case, a null pointer will appear to point
to some character string, usually garbage. Other implementations allow
locatIon 0 to be written as well as read. Misusing a null pointer on such
an implementation may well overwrite part of the operating system, caus-
ing complete mayhem.

Strictly speaking, this is not a portability problem: the effect of misus-
ing a null pointer is un?efined in all C programs. However, such pro-
grams can easily appear to work on pne implementation, with the trouble
not showing up until the program is moved to another machine.

The easiest way to detect these problems is to run your programs on a
machine that prohibits reading location O. The following program will
discover how an implementation treats 10cati0!1 0:

#include <stdio.h>

main( )
{

char *p;

p = NULL;
printf("Location 0 contains %d'n", *p);

This program will fail on a machine that prohibits reading location O.
Otherwise it will say, in decimal form, what character appears to ()Ccupy
location O.
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7.7 How does division truncate?
Suppose we divide a by b to give a quotient q and remainder r:

q a / b;
r = a % b;

CHAPTER 7

For the moment, suppose also that b>O.
What relationships might we want to hold between a, b, p, and q?

1. Most important, we want q*b + r == a, because this is the relation
that defines the remainder.

2. If we change the sign of a, we want that to change the sign of q, but
not the magnitude.

3. When b>O, we want to ensure that r>=O and r<b. For instance, if the
remainder is being used as an index to a hash table, it is important to
be able to know that it will always be a valid index.

These three properties are clearly desirable for integer division and
remainder operations. Unfortunately, they cannot all be true at once.

Consider 3/2, giving a quotient of 1 and a remainder of 1. This satis-
fies property 1. What should be the value of (-3) /2? Property 2 sug-
gests that it should be -1, but if that is so, the remainder must also be -1,
which violates property 3. Alternatively, we can satisfy property 3 by
making the remainder 1, in which case property 1 demands that the quo-
tient be -2. This violates property 2.

Thus C, and any language that implements truncating integer divi-
sion, must give up at least one of these three principles. Most program-
ming languages give up number 3, saying instead that the remainder has
the same sign as the dividend. This makes it possible to preserve proper-
ties 1 and 2. Most C implementations do this in practice, also.

However, the C language definition guarantees only property 1, along
with the property that Ir 1< Ib I and that r ~ 0 whenever a ~ 0 and b >O.
This property is less restrictive than either property 2 or property 3.

Despite its sometimes unwanted flexibility, the C definition is enough
that we can make integer division do what we want provided that we
know what we want. Suppose, for example, that we have a number n
that represents some function of the characters in an identifier, and we
want to use division to obtain a hash table entry h such that
O~h <HASHSIZE. If we know that n is never negative, we simply write

h = n % HASHSIZE;

However, if n might be negative, this is not good enough, because h
might also be negative. However, we know that h >-HASHSIZE, so we
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can write:

h = n % HASHSIZE; .
if (il < 0)

h += HASHStZE;
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Better yet, design the program to avoid negative values of n in the
first place and declare n as unsigned.

7.8 How big is a random number?
When the only C implementation ran on the PDP-ll computer, there was
a function called rand that returned a (pseudo-) random nonnegative
integer. PDP-ll integers were 16 bits long, including the sign, so rand
would return an integer between 0 and 215--,1.

When C was implemented on the VAX-ll, integers were 32 bits long.
This raised an implementation question: what should be the range of the
rand function on the VAX-ll?
This question was answered differently in two parallel implementa-

tion efforts. When the people at the University of California at Berkeley
did their C implementation, they took the view that rand should return
a value that ranges over all possible nonnegative integers, so their ver-
sion of rand returns an integer between 0 and 231_1.

The people at AT&T, on the other hand, decided that a PDP-ll pro-
gram that expected the result of rand to be less than 215 would be easier
to transport to a VAX-ll if the rand function returned a value between 0
and 215 there, too.

As a result, it is now difficult to write a program that uses rand
without tailoring it to the implementation. ANSI C defines a constant
RAND_MAX equal to the largest random number, but earlier C implementa-
tions generally do not have it.

7.9 Case conversion
The toupper and tolower fun~tions have a similar history. They were
originally written as macros:

#define toupper(c) «c)+'A'-'a')
#define tolower(c) «c)+'a'-'A')

When given a lower-case letter as input toupper yields the correspond-
ing upper-case letter. The tolower function does the opposite. Both
these macros depend on the implementation's character set to the extent
that they demand that the difference between an upper-case letter and
the corresponding lower-case letter be the same constant for all letters.
This assumption is valid for both the ASCII and EBCDIC character sets, and
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probably isn't too dangerous, because the non portability of these macro
definitions can be encapsulated in the single file that contains them.

These macros do have one disadvantage, though: when given some-
thing that is not a letter of the appropriate case, they return garbage.
Thus, the following innocent program fragment to convert a file to lower
case doesn't work with these macros:

int c;
while «c = getchar()) 1= EOF)

putchar(tolower(c));

Instead, one must write:

int c;
while «c = getchar()) I~ EOF)

putchar(isupper(c)? tolower(c): c);

At one point, an enterprising soul in AT&T software development
noticed that most uses of toupper and tolower were preceded by tests
to ensure that their arguments were appropriate. He considered rewrit-
ing the macros this way:

#define tdupper(c) «c»='a'&&(c)<='z'?(c)+'A'-'a':(c))
#define tolower(c) «c»='A'&&(c)<='z'?(ci+'a'-'A':(c))

but realized that this would cause c to be evaluated anywhere between
one and three tiines for each call, which would play havoc with expres-
sions like toupper (*p++ ). Instead, he decided to rewrite toupper and
tolower as functions. The toupper function now looked something
like this:

int
toupper(int c)
{

if (c >= 'a' && c <= 'z')
returrt c + 'A' - 'a';

return c;

and tolower looked similar.
This change had the advantage of robustness, at t,he cost of introduc-

ing function tall overhead into each use of these functions. Our hero
realized that some people might not be willing to pay the cost of this
overhead, so he re~introduced the macros with new names:

#define _toupper(c) «C)+'A'-'a'j
#define tolower(c) «c)+'a'-'A')

This gave users a choice of convenience or speed.
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There was just one problem in all this: the people at Berkeley never
followed suit, nor did some other C implementers. This means that a
program written on an AT&T system that uses toupper or tolower, and
assumes that it will be able to pass an argument that is not a letter of the
appropriate case, may stop working on some other C implementation.
This sort of failure is very hard to trace for someone who does not know
this bit of history.

7.10 Free first, then reallocate?

Most C implementations provide users with three memory allocation
functions called malloe, realloe, and free. Calling malloe(n)
returns a pointer to n characters of newly-allocated memory that the pro-
grammer can use. Giving free a pointer to memory previously returned
by malloe makes that memory available for reuse. Calling realloe
with a pointer to an allocated area and a new size stretches or shrinks the
memory to the new size, possibly copying it in the process.

Things were not always this way. The seventh edition of the refer-
ence manual for the UNIX system described slightly different behavior:

Realloe changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Realloe also works if ptr points to a block freed since the last call of
malloe, realloe, or ealloe; thus sequences of free, malloe, and realloe can
exploit the search strategy of malloe to do storage compaction.

In other words, this implementation allowed a memory area to be re-
allocated after it had been freed, as long as that reallocation was done
quickly enough. Thus, the following is legal under the Seventh Edition
system:

free(p) j
p = realloc(p, newsize);

On a system with this idiosyncrasy, one can free all the elements of a list
by the following curious method:

for (p = head; p 1= NULL; P
free((char *) p)j

p->next)

without worrying that the call to free might invalidate p->next.
Needless to say, this technique is not recommended, if only because

not all C implementations preserve memory long enough after it has
been freed. However, the Seventh Edition manual leaves one thing
unstated: an earlier implementation of realloe actually required that the
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area given to it for reallocation be freed first. For this reason, there are
still some C programs floating around that free memory first and then
reallocate it. This is something to watch out for when moving a very old
C program to a new implementation.

7.11 An example of portability problems
Let's look at a problem that has been solved many times by many people.
The following program takes two arguments: a long integer and a
(pointer to a) function. It converts the integer to decimal and calls the
function with each character of the decimal representation:

void
printnum(long n, void (*p)(»
{

if (n < 0) {
(*p) ('-');

n = -nj
}

if (n >= 10)

printnum(n/10, p);
(*p) «int)(n % 10) + '0');

This program is fairly straightforward. First we check if n is negative;
if so, we print a sign and make n positive. Next, we test if n ~ 10. If so,
its decimal representation has two or more digits, so we call printnum
recursively to print all but the last digit. Finally, we print the last digit,
casting the expression n%10 to int so that the right type of argument
will be handed to *p. t This is unnecessary in ANSI C but defends
against the possibility of someone translating it for an older implementa-
tion by simply rewriting the function header.

This program, for all its simplicity, has several portability problems.
The first is the method it uses to convert the low-order decimal digit of n
to character form. Using n%10 to get the value of the low-order digit is
fine, but adding , 0' to it to get the corresponding character representa-
tion is not. This addition assumes that the machine collating sequence
has all the digits in sequence with no gaps, so that ' 0' +5 has the same
value as ' 5', and so on. This assumption, while true of the ASCII and

t The technical report on which this book was based had

(*p) (n % 10 + '0');

as the last statement in printnum. This will work only on a machine in which int and
long have the same internal representation.



SECTION 7.11 AN EXAMPLE OF PORTABILITY PROBLEMS 97

EBCDIC character sets and of any ANSI-conforming implementation,
might not be true for some machines. The way to avoid that problem is
to use a table. Because a string constant represents a character array, it is
legal to use it in place of an array name. Thus the surprising expression

"0123456789"[n % 10]

in the example below is legal:

void
printnum(long n, void (*p)())
{

if (n < 0) {
(*p) (' -'); .

n = -nj
}

if (n >= 10)
printnum(n/10, p)j

(*p)("0123456789"[n % 10]);

The next problem involves what happens if n <0. The program prints
a negative sign and sets Ii to -n. This assignment might overflow,
because 2's complement machines generally allow more negative values
than positive values to be represented. In particular, if a (long) integer is
k bits plus one extra bit for the sign, -2k can be represented but 2k can-
not.

There are several ways around this problem. The most obvious one is
to assign -n to an unsigned long value and be done with it. But we
cannot evaluate -n because it might overflow!

In both l's complement and 2's complement machines, changing the
sign of a positive integer is guaranteed not to overflow. The only trouble
comes when changing the sign of a negative value. Therefore, we can
avoid trouble by making sure we do not attempt to make n positive.

Of course, once we have printed the sign of a negative value, we
would like to be able to treat negative and positive numbers the same
way. The way to do that is to force n to be negative after printing the
sign, and to do all our arithmetic with negative values. If we do this, we
will have to ensure that the part of the program that prints the sign is
executed only once; the easiest way to do that is to split the program into
two functions. The printnum function now just checks if the number
being printed is negative; if so it prints a negative sign. In either case, it
calls printneg with the negative absolute value of n. The printneg
function now caters to the fact n will always be negative or zero:
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void
printneg(long n, void (*p)())
{

if (n <= -10)
printneg(n/10, p)j

(*p)("0123456789"[-(n % 10)]);

void
printnum(long n, void (*p)())
{

if (n < 0) {

( *p) ( '-' ) j

printneg(n, p) j
else

printneg (-n, p) j
}

CHAPTER 7

This still doesn't quite work. We have used n/10 and n%10 to
represent the leading digits and the trailing digit of n (with suitable sign
changes). Recall that integer division behaves in a somewhat
implementation-dependent way when one of the operands is negative.
For that reason, it might actually be that n%10 is positive! In that case,
- (n%10) would be negative, and we would run off the end of our digit
array.

We cater to this problem by creating two temporary variables to hold
the quotient and remainder. After we do the division, we check that the
remainder is in range and adjust both variables if not. The printnurn
function has not changed, so we show only printneg:

void
printneg(long n, void (*p)())
{

long qj
int rj

q = n / 10j
r = n % 10j
if (r > 0) {

r -= 10j
q++j

}

if (n <= -10)
printneg(q, p) j

(*p)("0123456789"[-r])j

This looks like a lot of work to cater to portability.
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Why bother? Because we live in a world of constantly changing pro-
gramming environments. Despite its intangibility, most software will
outlast the hardware on which it runs. Moreover, it is not always easy to
predict the nature of future hardware. Portable software is lasting
software.

Portable software is also more likely to be correct. Much of the effort
in this example actually went into ensuring that printnum would work
properly even when presented with the mo~t negative possible value as
its argument. I've seen several commercial software products that blow
up in precisely such a situation.

Exercise 7-1. Section 7.3 (page 89) said that a machine with 8-bit charac-
ters would be most likely to have 16-bit or 32-bit integers. Why? D

Exercise 7-2. Write a portable version of the atol function, which takes
a pointer to a null-terminated character string as its argument and returns
the corresponding long value. Assume: .

• The input wili always represent a valid long integer, so atol need
not check for the input being out of bounds;

The only valid input characters are digits and + and - signs. The
input ends at the first invalid character. D





CHAPTER 8: ADVICE AND ANSWERS

•

You have just finished a tour through some of the ways that C program-
mers can hurt themselves. Like many of the people who read early drafts
of this book, you are probably wondering: "How can I avoid these prob-
lems?"
Perhaps the most important avoidance technique is to know what you're

doing. The most irritating problems stem from programs that appear to
work but have hidden problems. Because these problems are hidden, the
easiest way to detect them is by careful thought in advance. Fiddling
with a program until it appears to work is a reliable way of obtaining a
program that almost works.
The most eloquent statement of this I have seen appears, of all places,

in the construction manual for a harpsichord. It was written by David
Jacques Way, who clearly appreciates the importance of confident
knowledge, and with whose kind permission I reprint it:

'Thinking' is the cause of all error; I can prove this by the fact that
whoever makes a mistake always says, "Oh, but I thought ...." Never
mind this kind of thinking - before you glue anything together you
must know. Put the parts together without glue (called a 'dry run'),
study how they fit, and check with your drawing, which shows how
everything fits.

And after you have put something together with glue, check it again.
I've heard the sad story so many times: "Last night I did so and so, and
this morning when I looked at it...."

Dear builder, if you had looked at it last night you could still have
taken it apart and put things right. Many of you are building in your
spare time, so the temptation is great to work far into the night. But if
I can believe my telephone calls, most mistakes are made the last
thing before you go to bed. So go to bed before you do the last thing.

101
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This advice is remarkably relevant to programming if one thinks of "put-
ting it together with glue" as combining several small pieces into a
bigger program. Understanding how the pieces are going to fit before
actually fitting them is one of the keys to a reliable result.

Such understanding is particularly important under time pressure.
Near the end of a long debugging session, it becomes tempting to try
things almost at random and stop as soon as something seems to work.
That way lies disaster.

8.1 Advice

Here are some more general thoughts about error reduction.

Don't talk yourself into seeing what isn't there. Errors can be seductive.
For instance, the example in Section 1.1 (page 6) looked a little different
in the technical report that eventually grew into this book:

while (c == '\t' :: c =' , :: c == '\n')
c = getc(f);

As shown, this example is not valid C. The precedence of = is lowest of
any operator in the while clause, so it would have to be interpreted this
way:

while ((c == '\t' :: c)
c = getc(f);

This, of course, is invalid:

(c == '\t' :: c)

(' , :: c '\n') )

cannot stand on the left-hand side of an assignment. Thousands of peo-
ple saw this example, but no one noticed it until Rob Pike finally pointed
it out to.me.

When I started writing the book, I left the comments from readers of
the technical report until I was nearly done. Thus the erroneous example
above made it into the draft that went around for review inside Bell Labs
and again in the draft that Addison-Wesley sent out for review. Not one
single reviewer noticed the error.

Make your intentions plain. When you write one thing that might be
mistaken for another, use parentheses or other methods to make sure
your intent is clear. Not only will this help you understand what you
mean when you come back to the program, but it will also make things
easier if someone else has to look at it later.

It is sometimes possible to say things in a way that anticipates likely
mistakes. For example, some programmers put constants on the left of
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equality comparisons. That is, instead of saying

while (c == '\t':: c =="':: c == '\n')
c " getc(f);

they say

c)c :: ' \Ii'while ('\t' == c::"
c = getc(f);

This way, writing = instead of == eliCits a compiler diagnostic:

while ('\t' = c :: ' , == c :.: '\n' == c)
c = getc(f);

is invalid because it tries to assign a value to ' \ t'.

Look at trivial cases. This applies both to figuring out how programs
work and to testing them. So rp.any programs fail when some part of
their input is empty or has only one element that those are the cases to
try first. , .

This applies to program design too. When designing a program, ask
yourself what it will do with an empty collection of input data.

Use asymmetric bounds. Read again the discussion in Section 3.6 (page
36) about representing ranges. The fact that C subscripts start from zero
makes all kinds of counting problems easier once you understand how to
handle them.

Bugs lurk in dark corners. C implementations all differ slightly from
each other. Stick to the well-known parts of the language. By doing
that, you will make it easier to move your program to a new machine or
compiler and make it less likely that you will run into compiler bugs.

Recall, for instance, that the discussion of arrays and pointers in Sec-
tion 3.1 (page 31) stopped with issues still unexplored. Any program that
actually depends on the implementation getting all those details right is
likely to stop working at some point.

It may be worth defending against sloppy library implementations,
too. I had a lot of trouble moving a program once from one machine to
another, because that program thought it could calLprintf with a format
string several thousand characters long. Nothing wrong with that, of
course, except that some implementations of printf can't handle it.

This advice is especially important if you are thinking 6f using some
feature supported by only one vendor. Remember, your programs may
well outlast your machine.

Program defensively. Don't assume any more about your users or your
implementation than you have to. I recall one conversation I had with
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someone for whom I was building a system that went something like
this:

"What codes can appear in this part of this record?"

"The possible codes are X, Y, and Z."

"What if something else appears here?"

"That can't happen."

"Well, the program has to do something if it happens. What should
it do?"

"I don't care what it does."

"You really don't care?"

"Right."

"Then you won't mind if I have it delete the entire database if it
ever detects a code other than X, Y, or Z here?"

"Don't be absurd. You can't go deleting the whole database!"

"Then you do care what it does. So what would you like it to do?"

Things that "can't happen" sometimes happen anyway. A robust pro-
gram will defend against them.

It would be nice if C implementations could catch more programming
errors. Unfortunately that is difficult for several reasons. The most
important is probably historical: people have tended to use C for things
that formerly were done in assembly language. Therefore many C pro-
grams have parts that deliberately do things that, strictly speaking, are
outside what the language permits. Obvious examples are things like
operating systems. A strictly checking'C implementation would have to
have some kind of "escape route" that would permit such programs to do
the machine-specific things they need to do, while still checking strictly
the parts of the programs that are intended to be portable.

Moreover, some things are intrinsically hard to check. Consider this
function:

void
set(int *p, int n)
{

*p = n;

Is this valid or not? The answer, of course, is that is it impossible to
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know out of context. If it is called this way:

int a[10];
set(a+5, 37);

it is valid, but if it is called this way

int a[10];
set(a+10, 37);
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it isn't. And yet nothing is wrong with the latter fragment by itself:
ANSI C allows a program to generate the address of the location just past
the end of an array. So a C implementation that catches this sort of error
must be clever indeed.

That is not to say that C implementations that check more thoroughly
for errors are impossible - they aren't. In fact, there are a few on the
market. But no implementation can find all the errors in a program.

8.2 Answers
0-1 Would you buy an automobile made by a company with a high

proportion of recalls? Would that change if they told you they had
cleaned up their act? What does it really cost for your users to find
your bugs for you?

Reputation is an important factor in our choice of one product over
another. And once a reputation is lost it is hard to regain. It takes a
while to decide whether the high quality of the firm's recent products is
for real or just a fluke.

Most people would not knowingly buy a product that they expected to
have significant design defects - except if it is a software product. Most
people write at least some of their programs for use by others. People
expect software not to work. Surprise them.

0-2 How many fence posts 10 feet apart do you need to support 100
feet of fence?

Eleven. There are 10 segments of fence, but 11 posts; Count them your-
self. Section 3.6 (page 36) has more to say about the relevance of this
problem to programming errors.
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0-3 Have you ever cut yourself with a knife while cooking? How
could cooking knives be made safer? Would you want to use a
knife that had been modified that way?

It is easier to think of ways to make complicated tools safer than simple
ones. Food processors always have interlocks to prevent their users from
losing fingers. But knives don't: adding finger protection to such a sim-
ple, flexible tool would rob it of its simplicity. In fact, the result might
look more like a food processor than a knife.

Making it hard to do stupid things often makes it hard to do smart
ones too.

1-1 Some C compilers allow nested comments. Write a C program that
determines whether it is being run on such a compiler without gen-
erating any error messages. In other words, the program should be
valid under both comment rules, but should do something dif-
ferent in each. Hint. A comment symbol 1* inside a quoted string
is just part of the string; a double quote "" inside a comment is
part of the comment.

In order to tell if comments nest, it is necessary to find some sequence of
symbols that is valid under both interpretations but means different
things in each. Of necessity, such a sequence involves nested comments;
let us begin that way:

Whatever follows this will be part of a comment in a nesting implemen-
tation, but taken for real in a non nesting implementation .. One might
therefore imagine appending a close comment symbol in quotes:

If comments nest, this is equivalent to one quote. If not, it is a literal
string. We can therefore continue with an open comment and another
quote:

If comments nest, this is a quoted open comment symbol. If not, it IS a
quoted close comment symbol, followed by an unclosed comment. We
must simply close that comment:

This expression is equivalent to " *1 " if comments nest and " 1* "if
they don't.

After I solved this problem in essentially the form shown above, Doug
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McIlroy found the following astonishing solution:

~ 1*1*/0*1**/1
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This takes advantage of the "maximal munch" rule. If comments nest, it
is interpreted this way:

The two 1* symbols match the two .•/ symbols, so the value of this is 1.
If comments do not nest, a / * iil a comment is ignored. Thus even a / in
a comment has no special meaning; the expression is thus interpreted this
way:

0* 1 evaluates to o.

1-2 If you were writing a C compiler, would you make it possible for
users to nest comments? If you were using a C compiler that per-
mitted nested comments,. would you use that facility? Does your
answer to the second qu~stiori affect your answer to the first?

Nested comments are useful for' removing a block of code temporarily:
begin a comment before the c~de in question and end it after it. That
does have a disadvantage, though: if a iarge block is removed that way, it
is easy to fail to notice that it has .been removed.

However, the C language definition says that comments do not nest,
so a faithful implementer has no choice. Moreover, a programmer who
relies on nested comments will produce programs that will fail to work
on many compilers. Thus any use of nested comments wouid necessarily
be limited to programs ~ot intended for distribution in source for~.
Moreover, such programs would run the risk of failing on new or revised
C implementations.

For that reason, I would not implement nested comments if I were
writi.ng a C compiler, and I would not use them if my compiler had
them. Of course, you must make up your own mind.

i-3 Why does n-->O mean n-- > 0 and not n- -> o?

Because of the maximal munch rule, -- is determined to be a single
token before the > is seen.

1-4 What does a+++++b mean?

The only meaningful way to parse this is
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a ++ + ++ b

CHAPTER 8

However; the maximal munch rule requires it to be broken down as

a ++ ++ + b

This is syntactically invalid: it is equivalent to

((a++)++) + b

but the result of a++ is not an Ivalue and hence is not acceptable as an
operand of ++. Thus the rules for resolving lexical ambiguity make it
impossible to resolve this example in a way that is syntactically meaning-
ful. In practice, of course, the prudent thing to do is to avoid construc-
tions like this unless you are absolutely certain what they mean.

2-1 C permits an extra comma in an initializer list:

int days [] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31, };

Why is this useful?

After rewriting the example slightly,

int days[] = {

31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31,

} ;

it is how easy to see that each line of the initializer list ends with a
comma. Because every line is syntactically similar, it is much easier to
use automatic tools like editors to deal with large initialization lists.

2-2 We have seen several problems caused by the fact that C state-
ments end with semicolons. While it is too late to change that
now, it is fun to speculate about other ways of separating state-
ments. How do other languages do it? Do those methods have
their own pitfalls?

Fortran and Snobol statements both end at the end of the line; both
languages allow a statement to span more than one line by so indicating
on the second and subsequent lines of the statement. In Fortran, the indi-
cation is a non-blank character in character position 6 of the line (posi-
tions 0-5 are reserved for labels); in Snobol, the indication is a . or + in
position 1.

It seems a little strange for the meaning of a line to be affected by the
next line. A few languages therefore use some kind of indication on lihe
n that line n +1 should be considered part of the same statement. The
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UNIX system Sh~ll, for example, uses a \ character ilt the end of the line
to indicate that the next line is part of the same statement, and C uses the
same convention in the preprqcessor and inside character strings. Other
languages, such as Awk and Ratfor, say that a stiltement is continued if it
ends with something that demands to be followed, such as an operator or
an open parenthesis. Such schemes seem to work well in practice,
though they can be hard to define rigorously.

3-1 Suppose it were illegal even to generate the address of an array
element that is out of bounds. How would the bufwri te pro-
grams in Section 3.6 (page 39) look?

The bufwri te prqgrams assume that it is possible to :return with the
buffer completely full and flush it the next time bufwri te is called. If
bufptr may nqt point beyond the buffer, this problem suddenly
becomes messy: how should we indicate that the buffer is full?

The least inconvenient solution seems to be to avoid leaving the
buffer full when bufwri te returns. To do this, we treat the last charac-
ter to enter the buffer as a special case.

We must also avoid incrementing p until we know that it does not
already point to the last element of some array. In effect, we must not
increment p after fetching the last input character. We do this here with
an extra test each time through the loop; the alternative would be to
duplicate the whole loop:

void
bufwrite(char *p, int n)
{

while (--n >= 0) {
if (bufptr == &buffer[N-1])

*bufptr = *p;
flushbuffer() ;

} else
*bufptr++ = *p;

if (n > 0)

P++j

We carefully avoid incrementing bufptr when the buffer is full to avoid
generating the illegal address of buf f er [N] .

The second version of bufwri te becomes even messier. We know at
entry that there is at least one character available in the buffer, so we
never have to flush at the beginning; but we may have to flush at the
end. And again we must avoid incrementing p the last time through the



11 0 ADVICE AND ANSWERS

loop:

void
bufwrite(char *p, int n)
{

~hi1e (n > 0)
int k, rem;
rem = N - (bufptr - buffer);
k = n > rem? rem: n;
memcpy(bufptr, p, k);
if (k == rem)

flushbuffer() ;
else

bufptr += k;
n -= kj
if (n)

p += k;

CHAPTER 8

We compare k, the number of characters we will copy in the current
itera.tion, with rem, the number of characters remaining free in the
buffer, to see if the buffer will be full after the copy and needs flushing.
We check for the last time through the loop by comparing n to 0 before
incrementing p.

3-2 Compare the last version of flush shown in Section 3.6 (page 45)
with this one:

void
flush( )
{

int row;
int k bufptr - buffer;
if (k > NROWS)

k = NROWS;
for (row = 0; row < k; row++) {

int *p;
for (p = buffer+row; p < bufptr;

p += NROWS)
printnum( *p) ;

printnl() ;
}

if (k > 0)
printpage ();

The difference between these two versions is that the one shown here
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includes only the call to printpage in the test for k> 0, where the ver-
sion in Chapter 3 includes the entire for loop as well. That version
might be translated into English as: "If there is anything to print, print it
and then start a new page." The present version instead says, "Print
whatever is left, and start a new page if there was anything." The role of
k in the for loop above is a little less obvious than the version in
Chapter 3. There, it was immediately clear that the loop is skipped if k is
zero.

Although these two programs are technically equivalent, they express
slightly different intentions. The better one is whichever one expresses
the programmer's actual intention more closely.

3-3 Write a function to do a binary search in a sorted table of integers.
Its input is a pointer to the beginning of the table, a count of the
elements in the table, and a value to be sought. Its output is a
pointer to the element sought or a NULLpointer if the element is
not present.

Binary searches are conceptually very simple, but in practice people often
get them wrong. We will develop two versions here, both using asym-
metric bounds. The first uses subscripts; the second uses pointers.

Assume that x, the element sought, is element number k of the array if
it's there at all. Initially, all we know about k is that O~k <no Our aim is
to narrow that range until we find the element we seek or determine that
it isn't there.

In order to do this, we compare x to the element in the middle of the
range. If x is equal to that element, we're done. Otherwise we can
reduce the range by eliminating all the elements on the "wrong" side of
the one we examined. Here is a picture of the state of affairs during the
search:

o 10 k hi n

At any given time, we will consider the asymmetric range between 10
and hi. That is., we will require that 10 ~k <hi. If ever lo=hi, the range
has shrunk to nothing and we know that x is not in the table.

If 10<hi, there is at least one element in the range. We will set mid to
the middle of the range and then compare x to element number mid of
the table. If x is less than this element, then mid is now the lowest sub-
script beyond the range; we therefore set hi=mid. If x is greater, then
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mid +1 is now the lowest subscript of the reduced range; we therefore set
10=mid+1. Finally, if x is equal to the element, we're done.

Is it good enough to set mid =(hi +10) / 2? There is clearly no problem
if hi and 10 are far apart, but what if they are close together? I

The case hi =10 is not a problem; we already know the range is empty
and therefore we never bother setting mid. The case hi =10+2 is also not a
problem: hi +10 is then equal to 2xlo+2, which is an even number, so
(hi +10) / 2 is equal to 10+ 1. What about hi =10+ I? In that case, the only
element in the range is element number la, so it would be nice if
(hi +10) / 2=10.

Fortunately this is true because hi +10 is always positive; division in
that case is guaranteed to truncate down. Thus (hi +10) / 2 is equivalent to

. .
((10+1)+10)/2 or (2xlo+1)/2, which is just 10.

The program therefore looks like this:

int *
bsearch(int *t, int n, int x)
{

int 10 = 0, hi = n;
while (10 < hi) {

int mid = (10 + hi) / 2;
if (x < t[mid])

hi mid;
else if (x > t[mid])

10 mid + 1;
else

return t + mid;

return NULL;

Notice that evaluating

int mid = (10 + hi) / 2;

involves a division that can be written instead as a shift:

int mid = (10 + hi) » 1;

This will indeed speed up the program. First, though, let's try to get rid
of some of the address arithmetic; subscript operations are slower than
pointer operations on many machines. We can reduce address arithmetic
slightly by storing t+mid in a local variable instead of recalculating it:



+ hi) / 2 ;
mid;

mid;
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mid + 1 .,
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int *
bsearch(int *t, int n, int x)
{

int 10 = 0, hi = n;
while (10 < hi) {

int mid = (10
int *p = t +
if (x < *p)

hi
else if (x >

10
else

return p;

return NULL;
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Suppose we want to reduce address arithmetic still further by using
pointers instead of subscripts throughout the program. It would seem at
first glance that we can just rewrite it systematically:

int *
bsearch(int *t, int n, int x)
{

int *10 = t, *hi = t + n;
while (10 < hi) {

int *mid = (10 + hi) / 2;
if (x < *mid)

hi mid;
else if (x > *mid)

10 mid + 1;
else

return mid;

return NULL;

Indeed, this almost works. The problem is that the statement

mid = (hi + 10) / 2;

is illegal because it attempts to add two pointers. We need to calculate
the distance between 10 and hi and then add half that distance to 10:

mid = 10 + (hi - 10) / 2;

Calculating hi-l0 involves a division, but most implementations will be
clever enough to implement it as a shift. They won't be clever enough to
change our division by 2 into a shift, though: for all the compiler knows,
hi-l0 might be negative, in which case shifting and dividing by 2 give
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different answers. Thus ~e really should write the shift ourselves:

mid ~ 10 + (hi - 10) » 1;

Unfortunately, this is still not right. Remember that shift operations bind
less tightly than arithmetic! Thus, we must write

mid = 10 + «hi - 10) » 1);
and the completed program looks like this:

int *
bsearch(int *t, int n, int x)

int *10 = t, *hi = t + n;
while (10 < hi) {

int *mid = 10 + «hi - 10) » 1);
if (x < *mid)

hi mid;
else if (x > *mid)

10 mid + 1;
else

return mid;

return NULL;

Incidentally, binary searches are often expressed with symmetric bounds.
The resulting program looks somewhat neater because of the symmetry:

int *
bsearch(int *t, int n, int x)
{

int 10 = 0, hi = n - 1;
while (10 <= hi) {

int mid = (10 + hi) / 2;
if (x < t[mid])

hi mid - 1;
else if (x > t[mid])

10 mid + 1;
else

return t + mid;

return NULL;

However, we run into trouble if we try to translate this program into the
"pure pointer" form. The problem is that we cannot just initialize hi to
t+n": 1 because t+n-1 is an invalid address if n is zero! Thus if we wish
to go the pointer route, we must put in a separate test for n =0. This
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argues again for asymmetric bounds.

4-1 Suppose a program contains the declaration

long fOo;

in one file and

exter~ short fOo;
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in another. Suppose further that assigning a small value, say 37,
to the long versi~:mof foo results in giving the short version the
value 37 'as well. What li~ely inference follows about the
hardware? What if the short version becomes 0 instead?

If putting 37 in the long also puts 37 in the short, that suggests that
the short occupies the same memory as the part of the long that con-
tains the significant bits of 37: It might be that long and short are
really the same type, but it is a rare C implementation for which that is
true. It is more likely that the low-order bits of a long are in the part of
the lo~g that wou.ld share space with the short. This is normally the
part at the lowest memory address; the likely inference is therefore that
we are on a little-endian machine. Similarly, if storing 37 in the long sets
the short to 0, we are probably on a big-indian machine.

4-2 Here's one of the incorrect programs from Section 4.4 (page 61)
after simplification:

#include <stdio.h>

maine )
{

printf( n%g\nn, sqrt( 2));

On some systems, this will print

%g

Why?

Some C implementations have two versions of printf, one of which
implements the floating-point format items %e, %f, and %g and the other
of which does not, This duplication in the library saves space in pro-
grams that don't use floating-point arith!l1etic because such programs can
use the version of printf without floating-point support.

In some systems, the programmer lI).ust explicitly tell the linker
whether floating-point arithmetic is being used. Others try to decide



116 ADVICE AND ANSWERS CHAPTER 8

automatically by having the compiler tell the linker if it sees any
floating-point operations in the program.

This program does no floating-point operations! It doesn't include
math. h or declare sqrt, so the compiler has no way to know that sqrt
is a floating-point function. It didn't even pass a floating-point argument
to sqrt. Thus the compiler is justified in telling the linker that this isn't
a floating-point program!

What about the sqrt function? Surely the fact that sqrt was fetched
from the library is enough evidence that the program does floating-point
computation? That is true, of course, but the linker may have decided
what version of printf to use before fetching sqrt from the library.

5-1 When a program terminates abnormally, the last few lines of its
output are often lost. Why? What can be done about it?

A program that terminates abnormally may not have the opportunity to
flush its output buffers. Thus the program may have generated output
that is sitting in memory somewhere and was never written out. On
some systems, this output may be several pages long.

Losing output this way can mislead people trying to debug such pro-
grams, because it gives the impression that the program failed much ear-
lier than it actually did. The solution is to force output to be unbuffered
when debugging. The exact incantation for this varies slightly from one
system to another but usually looks something like this:

setbuf(stdout, (char *) 0);

This must be executed before anything is written to stdout, including
any calls to printf. A good place for it is as the first statement in the
main program.

5-2 The following program copies its input to its output:

#include <stdio.h>

main( )
{

register int c;

while ((c = getchar(» 1= EOF)
putchar (c) ;

Removing the #include statement from this program causes it to
fail to compile because EOF is undefined. It is poor practice to do
this, but suppose we define EOF by hand:
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#define EOF -1

main( )
{

register int c;

while ((c = getchar()) 1= EOF)
putchar (c) ;
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This program still works on many systems, but on some it runs
much more slowly. Why?

Function calls can take a long time, so getchar is often implemented as
a macro. This macro is defined in stdio. h, so if a program fails to
include stdio. h, the compiler has no way of knowing about the defini-
tion of getchar. It therefore assumes that getchar is a function that
returns an into

Many C implementations actually have a getchar function in their
libraries, partly to defend against precisely such carelessness and partly
for the convenience of people who might want to take the address of
getchar. Thus the effect of failing to include stdio. h is to replace the
macro version of getchar by a call to the function version. The program
becomes slower because of function call overhead. Precisely the same
argument applies to putchar.

6-1 Write a macro version of max with integer arguments that evalu-
ates its arguments only once.

The value of each argument to max is potentially used twice: once to
compare it and once to use it as the result. Thus it is essential to store
each argument in a temporary variable.

Unfortunately, there is no direct way to declare a temporary variable
inside a C expression, so if the max macro is to be used in an expression,
the variables must be declared elsewhere, probably next to the macro
definition instead of as part 6f it. We make the temporary variables
static to avoid name clashes if max is used in more than one program
file. Presumably these definitions would appear in some header file:

static int max_temp1, max_temp2;
#define max(p,q) (max_temp1=(p) ,max_temp2=(q) , \

max_temp1>max_temp2? max_temp1: max_temp2)

This will work as long as calls to max are not nested; making it work in
that case may be impossible.
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6-2 Can the "expression"

(x) «x)-1)

CHAPTER 8

mentipned in Section 6.1 (page 78) ever be a valid C expression?

One possibility is if x is a type name, such as might be defined by

typedef int x;

In that case,

(x) «x)-1)

is equivalent to

(int ) « int )- 1)

which takes the constant -1 and casts it to int twice. The same effect
could be achieved by using the preprocessor to define x as a type:

#define x int

Another possibility ilrises if x is a function pointer. Recall that if a func-
tion pointer is used in a context where a function is required, the func-
tion addressed by that pointer is automatically fetched and used instead.
Thus it is possible to interpret this expression as calling the function
pointed to by x with (x) - 1 as its argument. In order for. (x) -1 to be a
valid expression, x must really point to an element of an array of pointers
to functions.

What is the full type of x? For convenience, let T be the type of x, so
we can declare x by saying

T x;

Apparently, x must be a pointer to a function whose argument is of type
T. This makes T a little hard to define. The obvious approach doesn't
work:

typedef void (*T)(T);

because T isn't defined until after the declaration is seen! However, it
isn't quite necessary to insist fhilt x point to a function with a T argu-
ment; instead its argument can be any type to which a T can be cast. In
particular, void * will work:

typedef void (*T)(void *);

The point of this exercise is to show that it isn't always possible to
dismiss out of hand strange-looking constructs as errors.
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7-1 Section 7.3 (page 89) said that a machine with 8-bit characters
would be most likely to have 16-bit or 32-bit integers. Why?

Some computers assign a unique memory address to each character, while
others address memory in words. Word-addressed machines often have
problems processing character data efficiently: getting a single character
from memory entails fetching an entire word and then discarding the
unwanted parts of it.

The efficiency of character processing on character-addressed
machines has caused them to become more popular than word-addressed
machines in recent years. However, the notion of a word is still impor-
tant to character-addressed machines for integer arithmetic. Since charac-
ters are stored in consecutive memory locations, the addresses of consecu-
tive words must differ by the number of characters in a word.

It is much easier for the hardware to convert from character addresses
to word addresses if the number of characters in a word is a power of 2,
because multiplication by a power of 2 is just a shift. Thus it is reason-
able to expect a word to be a power of 2 characters long.

Why not 64-bit integers? They would definitely be useful sometimes.
However, they become less important on machines with floating-point
hardware, and they are expensive to implement when compared with
how often that much integer precision is really needed. It is possible to
simulate 64-bit (or longer) integers in software efficiently enough for
occasional use.

7-2 Write a portable version of the atol function, which takes a
pointer to a null-terminated character string as its argument and
returns the corresponding long value. Assume:

• The input will always represent a valid long integer, so atol
need not check for the input being out of bounds;

The only valid input characters are digits and + and - signs.
The input ends at the first invalid character.

We will assume that digits are contiguous in the machine's collating
sequence: every modern machine behaves this way and ANSI C requires
it. The main problem is thus to avoid overflow in intermediate results
even though the final result is in range.

As in the case of printnum, this may be tricky if the most negative
and most positive long values do not match. In particular, if we develop
the value as a positive number and then negate it later, we will overflow
on the most negative integer on many machines.

The following version avoids these overflows by using only negative
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(and zero) values to build its result:

long
atol(char *5)
{

long r = 0;
int neg = 0;

switch (*5)
case '-' :

neg 1;
1* no break *1

case '+':
5++;
break;

while (*5 >= '0' && *5 <= '9')
int n = *5++ - '0';
if (neg)

n = -n;
r = r * 10 + n;

return r;

CHAPTER 8



APPENDIX: PRINTF, VARARGS, AND STDARG

This appendix describes three common C facilities that are often misun-
derstood: the printf family of library functions and the varargs and
stdarg facilities for writing functions with arguments whose number
and type vary from one call to another. I often see programs using
aspects of printf that disappeared years ago and other programs, even
production programs, using assorted non portable kludges to accomplish
what they could have done much more cleanly using varargs or
stdarg.

A.I The printf family
The following program is similar to the first C example in Chapter 0:

#include <stdio.h>

main( )
{

printf ("Hello world\n") j

The output from this program is

Hello world

followed by a newline character (\n).
The first argument to printf is a format, a character string that

describes the form of the output. Following the normal C convention,
this character string must end with a null character (\0); writing the
string as a constant automatically guarantees proper termination.

The printf function copies characters from the format to the stan-
dard output until either the e~d of the format is reached or a % character
is encountered. Instead of printing a % it finds in the format, printf
looks at a few characters following the % for instructions as to how to
convert its next argument. The converted argument is printed in place of

121
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the % and the next few characters. Since the format in the example above
does not contain a %, the output from printf is exactly those characters
given in the format. The format, along with its corresponding argu-
ments, determines every character in the output, including the newline that
ends each line.

The printf function has two relatives, fprintf and sprintf.
Where printf writes on the standard output, fprintf can write on any
output file. The specific file to be used is given to fprintf as its first
argument: it must be a FILE pointer. Thus,

printf (stuffl ;

and

fprintf (stdout, stuffl;

mean the same thing,
The sprintf function is used when the output, is to go somewhere

other than to a file. The first argument to sprintf.is a pointer to a char-
acter vector in which sprintf will place its output. It is the
programmer's responsibility to ensure that this array is large enough to
contain the output that sprintf will generate. The remaining argu-
ments are identical to those of printf. The output of sprintf is always
terminated by a null character; the only way a null character can appear
otherwise is by explicitly using the %c format item to print it.

All three functions return the number of characters transmitted. In
the case of sprintf, the count does not include the null character at the
end of the output. If printf or fprintf encounter an I/O error while
attempting to write, it will return some negative value. In this case, it
will be impossible to determine how many characters were written.
Since sprintf does no I/O, it should never return a negative value (but
no doubt some implementation will corne up with a reason for it to do
so).

Because the format string determines the types of the remaining argu-
ments, and because the format string can be built during execution, it is
very hard for a C implementation to check that printf arguments are of
the right types. Thus saying

printf("%d\n", 0.1);

or

printf ( "%g\n", 2);

will result in garbage and is extremely unlikely to be detected before the
program is actually run.

Most implementations miss this one too:
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fprintf("error\n");
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The programmer here used fprintf intending to write a message on
stderr but forgot to mention stderr; the likely result is a core dump as
fprintf interprets the format string as a file structure.

Simple format types

Every format item is introduced by a % sign, which is followed, not
always immediately, by a character called the format code, which gives the
type of conversion. Other characters may optionally appear between the
%and the format code; they ~erve to modify the conversion in ways that
are detailed later. The format code always ends the format item.

The most common format item is surely %d, which prints an integer
value in decimal form. For example,

printf("2 + 2 = %d\n", 2 + 2);

will print

2 + 2 = 4

followed by a newline (future examples will not explicitly state the pres-
ence of a newline in the output).

The %d format item is a request to print an integer, There must be a
corresponding int argument. The decimal value of the integer, with no
leading or trailing spaces, replaces the %d as the format is copied tq the
output: If the 'integer is negative, the first charact~r of the output value
is a - sign.
The %~format item treats an integer as if it were unsigned. Thus, for

example,

printf("%u\n", -37);

prints

4294967~59

on a machine with 32-bit int values.
Recal~ that char and short arguments are automatically widened to

into This can cause surprises on machines that treat char values as
signed. For example, on such a machine,

char c;

c = -37;
printf( "%u\n", c);

prints
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4294967259

APPENDIX

because the char -37 is converted to an int -37. To avoid this prob-
lem, reserve the %u format item for unsigned values.

The %0, %x, and %Xformat items print integer values in base 8 or 16.
The %0 item requests octal output, and the %x and %Xitems both request
hexadecimal output. The only difference between %x and %Xis that the
%x item uses the letters a, b, c, d, e, and f for digit values from 10
through 15, and the %Xitem uses A, B, C, D, E, and F. Octal and hex
values are always unsigned.

An example:

prints

int n = 108;
printf("%d decimal %0 octal %x hex\n", n, n, n);

108 decimal = 154 octal = 6c hex

If %Xwere used instead of %x, the output would be

108 decimal = 154 octal = 6C hex

The %5 format item prints strings: the corresponding argument must be a
character pointer, and characters are printed starting at the location
addressed by the argument until a null character (' \0') is encountered.
Here is one way to use a %5 format item:

printf("There %9 %d item%s in the list.\n",
nl=1? "are": "is", n, nl=1? "s": "");

Either is or are will be substituted for the first %5, and either 5 or the
null string will be substituted for the second %5. Thus if n is 37, the out-
put will be

There are 37 items in the list.

but if n is 1, the output will be

There is 1 item in the list.

A string printed with the %5 format item must be terminated by a null
character (' \0') (with one exception to be covered la,ter). That is the
only way that printf can find the end of the string. If a string that is
given to the %5 item is not properly terminated, printf will continue
printing characters until it finds a ' \0' somewhere in memory - the
output may be very long indeed!

Since the %5 format item prints every character in the corresponding
argument,
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printf(s);

and

printf( "%S", S);
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do not mean the same thing. The first example will treat any % character
in s as beginning a format code; this will cause trouble if any format
codes other than %% appear because there is no corresponding argument.
The second example wili print any null-terminated string.

Since a NULLpointer does not point anywhere, it certainly does not
point to a string of characters. Hence the results of

printf( "%s'\n", NULL);

are unpredictable. Section 3.5 (page 35) discusses this in more detail.
The %c format item prints a single character:

printf( "%c", c);

is equivalent to

putchar (c) ;

but has the added flexibility of being able to embed the value of the
character. c in some larger context. The argument that corresponds to a
%c format item is an int that is converted to a char for printing. For
example:

printf("The decimal equivalent of '%c' is %d'\n",
'*', ',*');

will print

The decimal equivalent of '*' is 42

Three format items print floating-point values: %g, %f, and %e. The
%g format item is the most useful for printing floating-point values that
are not to appear in columns. It causes the corresponding value (which
must be float or double) to be printed, with trailing zeroes removed, to
six significant digits. Thus, after including math. h,

printf("Pi = %g'\n", 4 * atan(1.0));

prints

Pi 3.14159

and

printf( "%g %g %g %g %g\n" ,
1/1.0, 1/2.0, 1/3.0, 1/4.0, 0.0);
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prints

1 0.5 0.333333 0.25 0

APPENDIX

Leading zeroes do not contribute to the precision, so there are six 3s in
0.333333. Values printed are rounded, not truncated:

printf("%g\n", 2.0 / 3.0);

prints

0.666667

If the magnitude is greater than 999999, printing the value in the format
just described would require either printing more than six significant
digits or displaying an incorrect value. The %g format item resolves this
problem by printing such a value in scientific notation:

printf ( "%g\n", 123456789.0);

prints

1.23457e+08

The value is again rounded to six significant digits.
When the magnitude gets small enough, the number of characters

required to represent the value gets uncomfortably large. For example, it
is ungainly to write 1I"xlO-10 as 0.000000000314159; it is both more
compact and easier to read if written as 3. 1415ge-1 O. These two forms
have the. same length whenever the exponent is exactly -4 (for example:
0.000314.159 takes as much space as 3.1415ge-04); the %g format item
therefore does not start to use scientific notation for small numbers until
the exponent is -5 or smaller. Thus

printf("%g %g %g\n", 3.1415ge-3, 3.1415ge-4, 3.1415ge-5);

prints

0.00314159 0.000314159 3.1415ge-05

The %e format item Insists on writing floating-point values with an
explicit exponent: 11" written under %e format is 3. 141593e+OO. The %e
format item prints six digits after the decimal point, rather than six signifi-
cant digits.

The %f format item forces the value to be printed without an explicit
exponent, so 11" appears as 3. 141593. Again, the %f format item prints
six digits after the decimal point. Thus a very small value may appear as
zero even if it is not, and a very large value appears with a lot of digits:

printf("%f\n", 1e38);
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prints

100000000000000000000000000000000000000.000000

Since the number of digits printed here exceeds the precision of most
hardware, the result may vary on different machines.

The %Eand %Gformat items behave in the same way as their lower-
case counterparts, except that E instead of e will introduce the exponent.

The %%format item prints a %character. It is unique in that it is used
without a corresponding argument. Thus, the statement

printf("%%d prints a decimal value\n");

prints

%d prints a decimal value

Modifiers

The printf function accepts additional characters that modify the mean-
ing of a format item." These characters appear between the %and the fol-
lowing format code.
Integers come in three lengths: short, long, and plain. "If a short

integer appears as an argument to any function, including printf, it is
automatically expanded to a plain integer, but we still need a way to tell
printf to expect a long argument. This is done by inserting an 1
immediately before the format code'- creating %ld, %10, %lx, and %lu as
new format codes. These modified codes behave in exactly the same way
as their unmodified counterparts, except that they demand a long integer
to correspond with them. The %lu format item prints a long integer as if
it were long unsigned even in those few C implementations that do
not support long unsigned values directly. The 1 modifier is meaning-
ful only for integer format codes.

Many implementations store int and long values with the same pre-
cision. Failure to use an 1 modifier on such a machine will go
undetected until the" program is moved to a machine in which int. and
long" are truly different. Thus, for example,

long size;

.printf( "%d\n", size);

will work on some machines and not others.
The width modifier makes it easier to print values in fixed-width fields.

It appears between the %and the following format code, and specifies the
minimum number of characters that should be printed by the format item
it modifies. If the value being printed does not fill the field, blanks will
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be added on the left to make the value wide enough. If the value printed
is too big for the field, the field is expanded appropriately. The width
modifier never causes truncation of a field. When using the width modifier
to 'line up columns of figures, a value that is too large for its column will
displace subsequent values on that row to the right.

This program fragment:

int i;
for (i = 0; i <= 10; i++)

printf("%2d %2d *\n", i, i * i);

produces the following output:

00*
1 1 *
24*
39*
4 16 *
5 25 *
6 36 *
7 49 *
8 64 *
9 81 *

10 100 *

The * in this example marks the end of the line. The value 100 is too
large to fit in two characters, so its field is expanded and the rest of the
line shifted right.

The width modifier is effective for all format codes, even %%. Thus,
for example,

printf( "%8%\n");

prints a % right-justified in an eight-character field. In other words, it
prints seven spaces followed by a %.

The precision modifier controls the number of digits that appear in the
representation of a number or limits the number of characters printed
from a string. It consists of a decimal point followed by a string of digits
and appears before the format code and length modifier and after the %
and width modifier. The exact meaning of the precision modifier varies
with the format code:

• For the integer format items %d, %0, %x, and %u, it specifies the
minimum number of digits to print. If the value doesn't need that
many digits, leading zeroes will be supplied. Thus,

printf("%.2d/%.2d/%.4d\n", 7, 14, 1789);

prints
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07/14/1789
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• For %e, %E, and %f format items, the precision specifies the number of
digits after the decimal point. Unless the flags (which we will discuss
shortly) specify otherwise, a decimal point appears only if the preci-
sion is greater than zero. Thus, after including math. h,

double pi;
pi = 4 * atan(1.0);
printf("%.Of %.1f %.2f %.3f %.6f %.10f\n",

pi, pi, pi, pi, pi, pi);
printf("%.Oe %.1e %.2e %.10e\n",

pi, pi, pi, pi, pi, p~j;

prints

3 3.1 3.14 3.142 3.141593 3.1415926536
3e+00 3.1e+00 3.14e+00 3.1415926536e+00

• For %g and %Gformat items, the precision specifies the number of sig-
nificant digits to print. Unless the flags specify otherwise, insignificant
zeroes are removed, and the decimal point is deleted if no digits fol-
low it.

printf("%.1g %.2g %.4g %.8g\n",
10/3.0, 10/3.0, 10/3.0, 10/3.0);

produces

3 3.3 3.333 3.3333333

• For %5 format items, the precision gives the number of characters to
print from the corresponding string. If the string doesn't have
enough characters to satisfy the precision, the output will be shorter
than that; the field width modifier can lengthen the output if needed.

Some systems store a filename component in a 14-character array. If
the component name has fewer than 14 characters, the remainder of
the array is filled with null characters, but if the name has its max-
imum length, no null character terminates the array. Such a name
might be printed as follows:

char name [14] ;

printf(" ... %.145 "... , ... , name, ..;);

This ensures that the name is printed properly, regardless of its
length. Using a format item of %14.145 would guarantee that exactly
14 characters would be printed, regardless of the length of the name
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(if necessary, the name will be padded on the left to 14 characters; we
will see shortly how to pad it on the right).

• The precision is ignored for c and % format items.

Flags

Between the % and the field width, characters may appear that alter the
effect of the format item slightly. These are called flag characters. The
flag characters and their mea"nings are as follows:

The - flag is meaningful only if a width is present (because padding is
only necessary if the width is greater than necessary to contain the
value printed). In that case, any padding blanks will appear on the
right rather than on the left.

When printing character strings in fixed columns, it usually looks
better to left-justify them. Thus a format like %148 is probably a mis-
take and should have been written as %-148. The previous example
therefore probably gives more attractive results this way:

char name [ 14] ;

printf(" ... %-145 "... , ... , name, ... );

• The + flag specifies that every numeric value printed should have a
sign as its first character. Thus nonnegative values will appear with a
+ as the first character. It bears no relationship to the - flag.

prirttf("%+d %+d %+d\n", -S, 0, S);

produces

-S +0 +S

• When a blank is used as a flag, it means that a single blank is to
appear before a numeric value if its first character is not a sign. This
is most usetul for making left-justified columns of numbers line up
without using + signs. If the + and blank flags appear with the same
tormat item, the + flag takes precedence. For example,

int i;
for (i = -3; i <= 3; i++)

printf("% d\n", i);

prints
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-3
-2
-1

o
1
2
3
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The % e and %+e format ~tems are more useful than the plain %e for-
mat item for printing numbers in columns in scientitic notation: the
presence of the sign (or blank) in all output values guarantees that the
deCimal points will all line up. For example:

double x;

for (x = -3; x <= 3; x++)
printf("% e %+e %e\n", x, x, xl;

prints

-3.0000bOe+OQ
-2.000000e+00
-1.00dOOOe+00
O.OOOOOOe+OO
1.000000e+00
2.000000e+00
3.000000e+OO

-3.000000e+00
-2.000000e+00
-1.000000e+00
+O.OOOOOOe+OO
+1.000000e+00
+2.000000e+00
+3.000000e+00

-3.000000e+00
-2.000000e+00
..,1.000000e+00
O.OOOOOOe+OO
1.000000e+00
2.000000e+00
3.000000e+00

The column printed' with %e doesn't line up correctly, but the other
two do.

• The # flag alters the format of numeric values slightly; In a way that
depends on the particular format item. Its effect .on the %0 format
item is to increase the precision, if necessary, just enough that the first
digit that is printed is O. The idea is to permit octal values to be
printed in the format in which most C programmers are used to see-
ing them. %#0 is not the same as 0%0 because 0%0 prints zero as 00.
Similarly, the %#x and %#X format items cause the value to be pre-
ceded by Ox and ox, respectively.

The # flag affects floating-point formats in two ways: it causes the
decimal point always to be printed, even if there are no digits after it;
and it stops the %g and %G formats from suppressing trailing zeroes.
For example,

printf ("%.Of %#. Of %g %#g\n",
3.0, 3.0, 3.0, 3.01;

produces
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3 3. 3 3.00000
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The flags are all independent of each other, except for blank and +.

Variable field width and precision

A number of C programs carefully define the width of some character
array as a manifest constant to make it easy to change but then state the
width as an integer constant when it comes time to print it. Thus our
earlier example might be unwisely rewritten this way:

#define NAMESIZE 14
char name[NAMESIZE];

printf ( " • •. %. 14s .•• ", ... , name, ... );

The purpose of defining NAMESIZE was to make it unnecessary to men-
tion the value 14 more than once; someone changing NAMESIZE later is
likely to forget to search every printf call for values to change. Yet it is
not possible to use NAMESIZE directly in a printf call:

printf(" .•• %.NAMESIZE ... ", ..• , name, ... );

won't work because the preprocessor won't reach inside strings.
The printf function therefore allows a field width or precision to be

given indirectly. To do this, replace either or both of the field width and
precision by a *. In this case, printf takes the actual value(s) to be used
from its argument list before it fetches the value to be printed. Thus the
example above could be written

printf ( " ..• %.*s ... ", ..• , NAMESIZE, name, .•• );

If the * convention is used for both field width and precision, the field
width argument appears first, followed by the precision argument and
then by the value to be printed. Thus

printf("%*.*s\n", 12,5, str);

has the same effect as

printf("%12.5s\n", str);

which prints the first five characters of str (or fewer, if strlen( s) <
5), preceded by enough blanks to bring the total number of characters
printed to 12.. As an arcane example,

printf( "%*%\n", n);

prints a % right-justified in a field of n characters; this is equivalent to
n -1 spaces followed by a %.

If * is used for the field width, and the corresponding value is
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negative, the effect is as if the - flag were also present. Thus, in the
example immediately above, if n is negative, the output will be a % fol-
lowed by I-n spaces.

Neologisffls

The ANSI definition has added two new format codes: %p prints a pointer
in some form that is suitable for the particular C implementation, and %n
indicates how many characters have been printed so far by storing a value
into the int addressed by the corresponding argument. After executing

int n;

printf( "hello\n%n", &n);

n has the value 6.

Anachronisms

Several things have vanished from printf over the years. Some imple-
mentations still support them.

The %D and %0 format items were once synonyms for %ld and %10.
Moreover, the %x format item was a synonym for %lx. It was considered
more useful to be able to print hex values in upper case, so the meaning
of %X changed. %D and %0 were dropped at the same time.

At one time, the only way to print a value with leading zeroes was to
use 0 as a flag. This would indicate that the value printed should be pad-
ded with zeroes instead of blanks. Thus

printf("%06d %06d\n", -37, 37);

would print

-00037 000037

However, the definition of this interacted strangely with requests for left
justification and printing hex values. The precision modifier for integers
is therefore a much better way to do this:

printf("%.6d %.6d\n", -37, 37);

prints

-000037 000037

which is close enough that %. can be substituted for %0 in most contexts.



134 PRINTF, VARARGS, AND STDARG

A.2 Variable argument lists with varargs .h

APPENDIX

As a C program grows, its author will often want to systematize error
handling. A natural way to do this is to have a funCtion called, say,
error, with the same kind of calling sequence as printf, so that

error ("%d is out of bounds", x) j

has the same effect as

fprintf(stderr, "error: %d is out of bourids'm", x);
exit(1);

Such a function is trivial to implement except for one little detail: the
number and types of arguments to error will differ from one call to
another, just as they do for printf. A typical, but incorrect, way to cope
with this problem is to make the error function look something like
this:

void error(a, b, c, d, e, f, g, h, i, j, k)

fprintf(stderr, "error: ")j

fprintf(stderr, a, b, c, d, e, f, g, h, i, j, k)j

fprintf(stderr, "\n"j;
exit (1);

The idea is tb gather a bunch of data from the argument list and pass it
on to fprintf; since the arguments a through k are not declared, they
are assumed to be int values. Of course, the arguments to error will
always include at least one non-iht (the format string), so this program
relies on being able to use a series of int arguments to copy values of
arbitrary type.

This will fail on some machines. Even when it succeeds, it is llmited:
if error has enough arguments, some of them will surely be lost. And
yet it must be possible to pass a variable argument list to a function
somehow because every program that calls printf does it.

One thing gives printf an easier job: its first argument must be a
character string, and by inspecting this string it is possible to derive the
number and types of the other arguments (assuming, of course, that the
call to printf is correctly coded), What we need is a way to get at what-
ever mechanism printf uses to access variable-length argument lists.

Such a mechanism must have the following characteristics to allow
printf to be implemented:

The first argument to a function can be accessed krlowing only its
type,
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• Once argument n has been successfully accessed, argument n+l can be
accessed knowing only its type.

• The time required to access an argument this way should not be exces-
sive.

Note in particular that it is not necessary to be able to access argu-
ments backwards, or in random order, or in any order other than sequen-
tially from the first one. Moreover, in general it is neither necessary nor
possible to detect the end of the argument list.

Most C implementations achieve this through a set of macro defini-
tions collectively called varargs. T.he exact nature of these macros will
vary from one implementation to another, but a program that uses them
carefully will be able to use variable argument lists on a wide variety of
machines.

Every program that uses varargs must fetch the relevant macro
definitions by saying

#inelude <varargs.h>

This header file defines the names va_list, va_del, va_start,
va_end, and va_argo The programmer is expected to define va_alist;
we shall see how shortly. It is important to avoid confusing va_list
and va_alist.

For each C implementation, there is some information that is needed
to access argument n of a variable argument list if its type is known. This
information is derived as a side effect of having accessed arguments 1
through n -1, and may be thought of as a pointer into the argument list,
although its implementation may be considerably more complex on some
machines.

This information is stored in an object of type va_list. Thus, after
declaring a va_list named ap, it will be possible to determine the
value of the first argument given only ap and the type of the first argu-
ment.

Accessing an argument through a va_list will also advance that
va_list to refer to the next argument in the list.

Because a va_list contains all the information necessary to access all
the arguments, a function f can create a va_list for its arguments and
pass it to another function g, which can then step through the arguments
of f.

For example in many implementations, each of the three printf
functions calls a common sub-function, and it is important for this sub-
function to be able to scan its caller's arguments.

A function that is called with a variable argument list must use the
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va_alist and va_del macros to form the beginning of its definition, as
follows:

#inelude <varargs.h>

void error (va_alist) va_del

The va_alist macro expands into the argument list that the particular
implementation will require to allow the function to handle a varying
number of arguments, and the va_del macro expands into the declara-
tions appropriate to the argument list, including a terminating semicolon
if necessary.

To scan its argument list, our error function must create a va_list
variable and initialize it by passing its name to the macro va_start.
Once the program is done with the argument list, it must call va_end
with the va_list name as its argument, to indicate that it no longer
needs the va_list.

Our error function has grown:

#inelude <varargs.h>

va_list ap;
va_start (ap) ;

the part of the program that uses ap appears here

other stuff may appear here, as long as it doesn't use ap

It is important to remember to call va_end. It makes no difference in
most C implementations, but a few versions of va_start allocate
dynamic storage for a copy of the argument list to make it easier to
traverse. Such an implementation is likely to use va_end to free that
storage; forgetting to call va",end may therefore result ina program that
appears to work fine ort some machines but slowly eats memory on oth-
ers.

The va_arg macro is used to access an argument. Its two arguments
are the name of a va_list and the data type of the argument it intends
to access next. It fetches the argument and updates the va_list to refer
to the next argument. Thus our error function now looks like this:
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#include <varargs.h>
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va_list ap;
char *format;

va_start(ap) ;
format = va_arg(ap, char *);
fprintf(stderr, "error: ");

do something magic

va_end(ap) ;
fprintf (stderr, "\n");
exit( 1);

Now we are stuck: there is no way to get printf to take a va_list as
an argument. We need to do that, as indicated by the "do something
magic" remark, but how?

Fortunately, many C implementations have, and ANSI C requires,
functions called vprintf, vfprintf, and vsprintf. These functions
behave like the printf functions except that they take a va_list in
place of the list of arguments after the format. These functions can exist
only because a va_list can be passed as an argument and a va_arg
need not appear in the same function as the call to va_start that estab-
lished the va_list it uses.

Thus, our final version of error looks like this:

#include <stdio.h>
#include <varargs.h>

void error. (va_alist) va_del
II

va_list ap;
char *format;

va_start(ap) ;
format = va_arg(ap, char *);
fprintf(stde~r, "error: ");
vfprintf(stderr, format, ap);
va_end(ap) ;
fprintf (stderr , "\n");
exit (1);.

As another example, here is one way to implement printf in terms of
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vprintf. Don't forget to save the result of vprintf to return to the
caller of printf:

#include <varargs.h>

int
printf(va_alist) va_del
{

va_list apj
char *formatj
int nj

va_start(ap) j
format = va_arg(ap, char *)j
n = vprintf(format, ap)j
va_end(ap) j
return nj

Intplentenung varargs.h

A typical implementation of varargs. h is all macros, except for a
typedef declaration for va_list:

typedef char *va_listj
#define va_del int va_alistj
#define va start(list) list (char *) &va alist
#define va_end(list)
#define va_arg(list,mode) \

«mode *) (list += sizeof(mode»)[-1]

Note first that va_alist is not even a macro in this version:

#include <varargs.h>

void error (va_alist) va_del

expands into:

typedef char *va_listj
void error(va_alist) int va_alistj

so a function that accepts a variable argument list appears to have a sin-
gle int argument named va_alist.

This example assumes an underlying C implementation that stores the
arguments for a function in contiguous memory, so that the address of
the current argument is all the information needed to step through the
arguments. Thus va_list is simply a character pointer in this imple-
mentation. The va_start macro sets its argument to the address of
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va_alist (with a cast to avoid a complaint from lint), and va_end
does nothing at all.

The most complicated macro is va_argo It must return the value of
appropriate type pointed to by its va_list argument, and increment that
argument by the length of an object of that type. Since the result of a
cast cannot appear as the target of an assignment it accomplishes this by
using sizeof to determine an appropriate increment and adding it
directly to the va_list. The resulting pointer is cast into the required
mode, and, since it now poihts one increment too far, a subscript of -1 is
used to access the correct argument.

A trap to avoid is trying to specify a second argument of char, short,
or float to va_arg: char and short arguments are converted to int,
and float arguments are converted to double. Incorrect speCifications
of this sort will cause trouble.

For example, it is never correct to say

c = va_arg(ap,char);

because there is no way to pass a char argument; such an argument is
automatically converted to into Instead, say

c = va_arg(ap,int);

On the other hand, if cp is a character pointer and a character pointer
argiunent is expected, it is completely correct to say

cp = va_arg(ap,char *);

Pointers are not changed when used as arguments, just char, short, and
float values.
Note also that there is no built-in way to tell how many arguments

were given. It is up to each individual program that uses varargs to
establish some convention to mark the end of the argument list. For
example, the printf functions use the format string to determine the
number and types of the additional arguments.

A.3 stdarg .h: the ANSI varargs .h

The varags. h faCility dates back to 1981 and is therefore available on a
variety of C implementations. The ANSI C standard, however, includes a
different mechanism, called stdarg. h, for dealing with variable argu-
ment lists.

The discussion in Section 7.1 (page 85) is relevant here to both C users
and implementers. Including varargs. h as an extension in an ANSI C
compiler is an excellent idea in order to make it possible to run older
programs. Thus in practice, using varargs. h is likely to result in a
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program that will run on more systems than a comparable program using
stdarg. h. But if you want to write an ANSI conforming program, you
must use stdarg. h: you have no choice! This is one of those trouble-
some situation when every alternative costs something.

The main difference between varargs. hand stdarg. h stems from
the observation that in practice the first argument to a function must be
the same type in every call. A function like printf can determine the
type of its second argument by examining its first argument, but there is
no information from its argument list that it can use to find the type of
its first argument. Therefore, a function that uses stdarg. h must have
at least one argument of fixed type, followed by an unknown number of
arguments of unknown type.

As art exampie, let's look at the error function again. Its first argu-
ment is a printf format, which is always a character pointer. Thus the
function can be declared this way:

void error(char *, ...);

What about the definition of error? The stdarg. h facility doesn't use
the va_arg or va_del macros of varargs .h. Instead, a function that
uses stdarg. h declares its fixed parameters directly and uses them as the
basis for its variable arguments by making the last fixed parameter an
argument to va_start. Thus error is defined this way:

#include <stdio.h>
#include <stdarg.h>

void error(char *format; ...)

va_list ap;
va_start(ap, format);
fprintf(stderr, "error: ");
vfprintf(stderr, format, ap);
va_end(ap) ;
fprintf (stderr, "'\n");
exit( 1); .

There is no need to use va_arg in this example because the format string
is in the fixed part of the argument list.

As another example, here is how to lise stdarg. h to write printf in
terms of vprintf:
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#include <stdarg.h>

int
printf(char *format, ...)
{

va_list ap;
int n;
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va_start(ap, format);
n = vprintf (format , ap)j
va_end(ap) ;
return n;
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