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Abstract

This paper describes the development of an analytic, low-order dynamic model of a miniature aerobatic
helicopter. This model was developed for the design and simulation of control systems capable of aerobatic
maneuvers. The goal was to obtain a model with the least amount of complexity, yet accurate across the
flight conditions encountered during extreme flight. This objective was achieved by focusing on the particular
characteristics of such highly maneuverable miniature helicopters. We followed a component buildup approach
in devising the model, using simplified analytical expressions for the component forces and moments. In addition
to the rigid-body dynamics, the model includes states for the longitudinal and lateral main rotor flapping, the
rotor speed, and an integral of the rotorspeed tracking error; resulting in a total of only 17 states. Flight
test experiments were used to estimate several key parameters, such as the equivalent stiffness in the hub and
equivalent fuselage frontal drag area.

1 Introduction

Miniature helicopters are naturally more agile than their full-scale counterparts [15]. This trait results from physical
scaling effects and specific design features found in helicopters of that size. Following physical scaling rules, as
the vehicle size decreases, the moments of inertia decrease with the fifth power of the scale factor, while the rotor
thrust nominally decreases proportionally to the vehicle mass, i.e., with the third power. Miniature helicopters can
easily have a high thrust-to-weight ratio (it can easily reach values as high as 2 to 3), which tends to accentuate
the scaling effects. Moreover, the rotor heads of miniature rotorcraft are also relatively more rigid than those in
full-scale helicopters, allowing for large rotor control moments. Also, many such vehicles can produce negative
thrust, allowing sustained inverted flight. Combined, these effects and design features allow for large and fast
angular excursions (up to 200 deg/sec), and large bi-directional load factors, which are the main ingredients of
aerobatic flight. When flown by expert pilots, miniature helicopters can execute maneuvers that outperform the
most agile full-scale vehicles. In addition, without human aboard, a broader variety of maneuvers may also be
possible. Such miniature, highly agile air vehicles are uniquely suited to fly through confined spaces. For example,
they could be used to explore urban canyons or other challenging environments, or to record aerial footages for
movie making industry. Mettler et al. produced a detailed analysis of these characteristics [16].

The main motivation for our work in autonomous aerobatic helicopter flight, and for the modeling work presented
herein, was the challenge of executing expert-pilot maneuvers entirely under computer control. Being able to
automatically execute aggressive maneuvers enables using the broadest range of behaviors when performing tasks
such as the ones described above. Pre-programmed maneuvers can be incorporated into online motion planning
techniques such as the “maneuver automaton” [6]. In a fully autonomous setting, such capabilities are key to a
timely and effective reaction to unforeseen obstacles.

There exists an extensive body of literature on the dynamics of full-scale helicopters. Step-by-step procedures for
developing first-principles dynamic models have been devised and published [22, 2, 25]. The models used in full-
scale helicopter simulators are high-order and contain a large number of parameters that often cannot be measured
directly. Moreover, once developed, models require extensive validation and refinement until they can predict the
vehicle dynamic behavior accurately. Applying detailed first-principle modeling techniques, is thus not a trivial
task, and may not be warranted given the differences between full-scale and miniature helicopters. Helicopters
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evolve in a wide range of aerodynamic conditions. Complex interactions take place between the rotor wake and the
fuselage or tail. In miniature helicopters, these subtle effects tend to be “overpowered” by the large rotor forces
and moments that follow quasi-instantaneously the rotor control inputs. To the authors’ knowledge, no examples
of models covering aerobatic conditions exist in the literature. In fact, few, or maybe even none of the full-scale
helicopters have the control authority of most agile small-scale helicopters.

Modeling techniques based on system identification have been used to derive linear models for control design,
study the vehicle flying qualities, and for the validation and refinement of detailed non-linear first-principle models.
Frequency domain identification methods such as CIFER [21, 26], were used to derive relatively simple linear
parameterized models that accurately capture the vehicle dynamics around specific operating points.

Mettler [15] performed a comprehensive study of the characteristics of small-scale helicopter dynamics. He devel-
oped and identified parameterized linear models for hover and cruise flight conditions for the Yamaha R-50, using
frequency domain methods (CIFER). He later applied the same parameterized model to MIT’s X-Cell .60, vali-
dating and extending the observation that the rotor forces and moments largely dominate the dynamic response
of small-scale helicopters. This significantly simplifies the modeling task. Both flight conditions are accurately
modeled by a rigid-body model augmented with the first-order rotor and stabilizer bar dynamics; no inflow dy-
namics were necessary. The coupled rotor and stabilizer bar equations can be lumped into one first-order effective
rotor equation of motion (for both the lateral and longitudinal tip-path-plane flapping). The linear models accu-
rately capture the vehicle dynamics for a relatively large region around the nominal operating point. The model
accurately predicts the vehicle angular response for aggressive control inputs for the full range of angular motion.
Subsequently, comparing results obtained for the larger Yamaha R-50 (150lb, 5ft rotor radius), and smaller MIT’s
X-Cell .60 (17lb, 2.5ft rotor radius), he showed that the former is dynamically similar to a full-scale helicopter; its
characteristics relate to those of a full-scale vehicle through Froude scaling rules. The latter, on the other hand,
belongs to an entirely different dynamic class; it relates to the larger vehicle via Mach scaling rules, which predict
a dramatic increase in agility with reduction of the vehicle size.

Following the work by Mettler, LaCivita et al. [11] developed a technique that makes use of the frequency responses
identified from multiple operating points, for the identification of key parameters of a more broadly descriptive
non-linear model. He applied the technique to CMU’s Yamaha R-50 helicopter using the hover and cruise data
collected in [15]. The nonlinear model with 30 states is linearized to permit a fit with the local frequency responses.
The reduced-order, linearized model is similar to the one proposed by Mettler [15]. The model was subsequently
used for the design of a H∞ controller, which demonstrated accurate tracking of simple trajectories at moderate
speeds [10].

The goal of this paper is to describe the analytical model used in our simulation model; providing the rationale for
the derivation of the equations of motion, as well as documenting the experimental methods used for the estimation
of the model’s parameters.

An essential aspect of our effort was the availability of a fully instrumented aerobatic vehicle, which allowed us
to collect accurate flight-test data. The helicopter selected for our effort is an X-Cell .60 SE manufactured by
Miniature Aircraft [20]. This helicopter is popular among expert hobby pilots for its extreme maneuverability. Its
characteristics result from a stiff rotor head, allowing the transmission of large control moments from the rotor to
the fuselage, a large thrust-to-weight ratio, and a fast rotor speed. It is equipped with a powerful .90 size engine
and an electronic governor for maintaining a near constant rotor speed. Like most miniature helicopters it is also
equipped with a stabilizer bar, which acts like a lagged attitude rate feedback [2], and is designed to help the
remote-control pilot control attitude dynamics.

The flight-test vehicle is instrumented using our own custom avionics suite. An overview of that system is described
in [24]. Several upgrades have been performed on that system since the last publication. Most notably, a low-cost
GPS receiver was replaced with a low-latency, high update rate unit [1], which improved accuracy of the attitude
and velocity estimates using an onboard extended Kalman filter (EKF). Three navigation sensors are used for
the helicopter avionics: an inertial measurement unit, consisting of three gyros and three accelerometers; a GPS
receiver; and a pressure altimeter. Without an air data system, we had to limit our flights to calm days. Full
estimated vehicle state and servo command data are available at 50 Hz rate.

The model has typical rigid body states with the quaternion attitude representation used in order to enable simu-
lation of extreme attitudes [23], two states for the lateral and longitudinal flapping angles, one for the rotorspeed,
and one for the integral of the rotorspeed tracking error. Governor action is modeled with a proportional-integral
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Figure 1: Miniature helicopter undergoing a Split-S maneuver. The same maneuver was performed by MIT
helicopter under computer control. Drawing courtesy of Popular Mechanics magazine.

feedback from the rotorspeed tracking error to the throttle command. The model covers a large portion of the
X-Cell’s natural flight envelope: from hover flight to about 20 m/sec forward flight. The maximum forward speed
corresponds to an advance ratio µ = 0.15, which is considered as relatively low [22], and permits a number of
assumptions (e.g. thrust perpendicular to the rotor disk, see [3]). The cross-coupling effects in the rotor hub were
also shown to be negligible for this helicopter, which further simplified model development. The mathematical
model was developed using basic helicopter theory, accounting for the particular characteristics of a miniature heli-
copter. Most of the parameters were measured directly, several were estimated using data collected from flight-test
experiments. Intermediate results from our modeling effort were already reported in [7]. The model’s accuracy was
verified using comparison between model predicted responses and responses collected during flight test data. The
model was also “flown” by an expert RC pilot to determine how well it reproduces the piloted flying qualities.

Analytical linearization of the model with respect to forward speed was used to derive simple linear models. These
were subsequently used for a model-based design of the controllers used for the automatic execution of aerobatic
maneuvers. Before their implementation, the controllers were put to test in the hardware-in-the-loop simulator.
One of the aerobatic maneuvers performed entirely under computer control is shown in Figure 1. The actual
aggressive trajectories flown by the helicopter were adequately predicted by the simulation based on the developed
nonlinear model.

In the remainder of the paper we provide a full list of model parameters with the numerical values, dynamics equa-
tions of motion, and expressions for forces and moments exerted on the helicopter by its components. Throughout
the paper we provided flight test data to validate the model for various flight regimes, including aerobatics.

2 Helicopter parameters

The physical helicopter parameters used for our model are given in Table 1. The moments of inertia around the
aircraft body axes passing through the vehicle center of gravity were determined using torsional pendulum tests [4].
The cross-axis moments of inertia are hard to measure without a balancing device; and since they are usually small
they were neglected. The X-Cell main and tail rotors, as well as the stabilizer bar, have symmetric airfoils. The
lift curve slopes of these surfaces were estimated according to their respective aspect ratios [9]. The effective
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Figure 2: Moments and forces acting on helicopter

torsional stiffness in the hub was estimated from angular rate responses to step commands in cyclic, as described
in Section 4.1.3.

Note that in the table “m.r.” stands for the main rotor, “t.r.” stands for the tail rotor.

3 Equations of motion

The rigid body equations of motion for a helicopter are given by the Newton-Euler equations shown below. Here
the cross products of inertia are neglected.

u̇ = vr − wq − g sin θ + (Xmr +Xfus) /m
v̇ = wp− ur + g sinφ cos θ + (Ymr + Yfus + Ytr + Yvf ) /m
ẇ = uq − vp+ g cosφ cos θ + (Zmr + Zfus + Zht) /m
ṗ = qr(Iyy − Izz)/Ixx + (Lmr + Lvf + Ltr) /Ixx

q̇ = pr(Izz − Ixx)/Iyy + (Mmr +Mht) /Iyy

ṙ = pq(Ixx − Iyy)/Izz + (−Qe +Nvf +Ntr) /Izz

The set of forces and moments acting on the helicopter are organized by components: ()mr for the main rotor;
()tr for the tail rotor; ()fus for the fuselage (includes fuselage aerodynamic effects); ()vf for the vertical fin and
()ht for the horizontal stabilizer. These forces and moments are shown along with the main helicopter variables in
Fig. 2. Qe is the torque produced by the engine to counteract the aerodynamic torque on the main rotor blades.
The helicopter blades rotate clockwise when viewed from above, therefore Qe ≥ 0. In the above equations we
assumed that the fuselage center of pressure coincides with the c.g., therefore the moments created by the fuselage
aerodynamic forces were neglected. The rotational kinematic equations were mechanized using quaternions [23].
The inertial velocities are derived from the body-axis velocities by a coordinate transformation (flat Earth equations
are used), and integrated to obtain inertial position. A 4th order Runge-Kutta integration method is used, with
an integration step of 0.01 seconds.
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Table 1: Parameters of MIT Instrumented X-Cell 60 SE Helicopter
Parameter Description
m = 8.2 kg helicopter mass
Ixx = 0.18 kg m2 rolling moment of inertia
Iyy = 0.34 kg m2 pitching moment of inertia
Izz = 0.28 kg m2 yawing moment of inertia
Kβ = 54 N·m/rad hub torsional stiffness
γfb = 0.8 stabilizer bar Lock number
Bnom

δlat
= 4.2 rad/rad lateral cyclic to flap gain at nominal rpm

Anom
δlon

= 4.2 rad/rad longitudinal cyclic to flap gain at nominal rpm
Kµ = 0.2 scaling of flap response to speed variation
Ωnom = 167 rad/sec nominal m.r. speed
Rmr = 0.775 m m.r. radius
cmr = 0.058 m m.r. chord
amr = 5.5 rad−1 m.r. blade lift curve slope
Cmr

D0
= 0.024 m.r. blade zero lift drag coefficient

Cmr
Tmax

= 0.0055 m.r. max thrust coefficient
Iβmr

= 0.038 kg m2 m.r. blade flapping inertia
Rtr = 0.13 m t.r. radius
ctr = 0.029 m t.r. chord
atr = 5.0 rad−1 t.r. blade lift curve slope
Ctr

D0
= 0.024 t.r. blade zero lift drag coefficient

Ctr
Tmax

= 0.05 t.r. max thrust coefficient
ntr = 4.66 gear ratio of t.r. to m. r.
nes = 9.0 gear ratio of engine shaft to m. r.
δtrim
r = 0.1 rad t.r. pitch trim offset
Svf = 0.012 m2 effective vertical fin area
Cvf

Lα
= 2.0 rad−1 vertical fin lift curve slope

εtrvf = 0.2 fraction of vertical fin area exposed to t.r. induced velocity
Sht = 0.01 m2 horizontal fin area
Cht

Lα
= 3.0 rad−1 horizontal tail lift curve slope

P idle
eng = 0.0 Watts engine idle power
Pmax

eng = 2000.0 Watts engine max power
Kp = 0.01 sec/rad proportional governor gain
Ki = 0.02 1/rad integral governor gain
fs

p = 12.5 Hz rolling resonance frequency of the suspension system
fs

q = 9.0 Hz pitching resonance frequency of the suspension system
fs

r = 9.6 Hz yawing resonance frequency of the suspension system
ξs = 0.05 damping ratio of the suspension system material
Sfus

x = 0.1 m2 frontal fuselage drag area
Sfus

y = 0.22 m2 side fuselage drag area
Sfus

z = 0.15 m2 vertical fuselage drag area
hmr = 0.235 m m.r. hub height above c.g.
ltr = 0.91 m t.r. hub location behind c.g.
htr = 0.08 m t.r. height above c.g.
lht = 0.71 m stabilizer location behind c.g.
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4 Component forces and moments

4.1 Main rotor forces and moments

4.1.1 Thrust

For the main rotor thrust we assumed that the inflow is steady and uniform. According to Padfield [22, p. 126],
the time constant for settling of the inflow transients at hover is given by

τλ =
0.849

4λtrimΩmr
(1)

For our helicopter the induced velocity at hover trim condition can be determined from simple momentum theory:

Vimr =
√

mg

2ρπR2
mr

= 4.2 m/sec (2)

The tip speed of the main rotor is V tip
mr = ΩmrRmr = 125.7 m/sec, from which the inflow ratio is λimr =

Vimr/V
tip
mr = 0.033. Therefore the time it takes for the inflow to settle is τλ = 0.038 sec, which is significantly

faster than the rigid body dynamics. During the maneuvers requiring large thrust variations the time constant
may change substantially. However, as shown in the section on the main rotor flapping dynamics, the X-Cell cyclic
control authority is dominated by the hub torsional stiffness, which makes the modeling of the inflow transients
less critical.

A momentum theory based iterative scheme given by Padfield [22, p. 123] was adapted to compute the thrust
coefficient and inflow ratio as a function of airspeed, rotor speed and collective setting. We neglect the flapping
angles in the computation of the rotor thrust. The blades of the main rotor have no twist. The influence of the
cyclics and the roll rate on thrust are of second order for our advance ratio range µ < 0.15, and were neglected as
well. We also introduced an empirically determined maximum thrust coefficient, since momentum theory does not
take into account the effect of blade stall.

The thrust coefficient is given by (omitting the “mr” index):

CT =
T

ρ (ΩR)2 πR2
(3)

where T is the main rotor thrust. Then the following system of equations can be solved iteratively:

λ0 =
CT

2ηw

√
µ2 + (λ0 − µz)

2
(4)

Cideal
T =

aσ

2

(
θ0

(
1
3

+
µ2

2

)
+
µz − λ0

2

)
(5)

CT = {
Cideal

T if − Cmax
T ≤ Cideal

T ≤ Cmax
T

−Cmax
T if Cideal

T < −Cmax
T

Cmax
T if Cmax

T < Cideal
T

(6)

Cmax
T =

Tmax

ρ (ΩR)2 πR2
(7)

Here

µ =

√
(u− uwind)2 + (v − vwind)2

ΩR
- advance ratio

µz =
w − wwind

ΩR
- normal airflow component

σ =
2c
πR

- solidity ratio
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a − lift curve slope
θ0 − commanded collective angle
ηw − coefficient of non-ideal wake contraction

Tmax = 2.5 mg - maximum rotor thrust

Based on momentum theory, the rotor wake far downstream contracts by a factor of two [22, p. 116]. We introduced
a coefficient ηw to account for non-ideal wake contraction and the power lost due to the non-uniform velocity and
pressure distribution in the wake. We have approximated this coefficient to be ηw = 0.9. Hence, the iterative
scheme given in [22, p. 123] is modified as follows. First, define the zero function:

g0 = λ0 −
CT

2ηwΛ1/2
,where

Λ = µ2 + (λ0 − µz)
2

and thrust coefficient CT is given by Eq. (4). Apply Newton’s iterative scheme:

λ0j+1 = λ0j + fjhj

(
λ0j

)
hj = −

(
g0

dg0/dλ0

)
λ0=λ0j

An explicit expression for hj :

hj = −
(
2ηwλ0j

Λ1/2 − CT

)
Λ

2ηwΛ3/2 + aσ
4 Λ− CT

(
µz − λ0j

)
Padfield [22, p. 123] suggests a constant value of the convergence rate coefficient fj = 0.6.

Note that at hover the denominator of Eq. (4) is zero when the vertical velocity is equal to the inflow velocity.
This condition corresponds to a vortex-ring state, which can not be modeled adequately by the momentum theory.
Instead, the denominator is numerically separated from zero. In general, this condition is avoided in flight because
it leads to a loss of control. We have to keep in mind that the simulation does not adequately represent the
helicopter dynamics when vortex-ring conditions exist on either the main or the tail rotor. Furthermore, strictly
speaking the momentum theory applies only to a fully developed steady state flow in ascending flight. Empirical
corrections for descending flight, cited by Padfield [22, p. 118], could be used to make thrust prediction somewhat
more accurate.

The momentum theory approach was previously shown to be adequate for estimating steady state main rotor thrust
both at hover and in fast forward flight. Results of the wind tunnel tests with a 5 ft diameter rotor are given by
Harris [8] and summarized by Bramwell [2, pp. 109-114]. It was shown that the blade lift curve slope coefficient a
can be determined from experiments such that the momentum theory accurately predicts thrust for a wide range of
advance ratios and collective pitch angles. To test the applicability of momentum theory-based thrust calculation
to transient response, we gathered flight data for collective pitch pulse responses at hover. At hover, the vertical
acceleration can be represented by a linear relation:

az = Zww + Zcolδcol (8)

The vertical speed damping stability derivative Zw and the collective pitch control derivative Zcol can be obtained
analytically by linearization of the momentum theory equations [22, pp. 219, 229]. For hover:

Zw = −ρ (ΩR)πR2

m

2aσλ0

16λ0 + aσ
(9)

Zcol = −ρ (ΩR)2 πR2

m

8
3

aσλ0

16λ0 + aσ
(10)
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Figure 3: Modeling vertical acceleration response at hover

We used the same value for the blade lift curve slope as determined for the particular airfoil used in the tests
summarized by Harris [8], a = 5.5. This value is consistent with the high aspect ratio of the main rotor blades, if
the blades are considered as a wing [9]. The mean values were subtracted from the collective command and the
vertical acceleration measurement; the signals were filtered with a first order low-pass filter with time constant of
0.2 seconds. The digital models of the analog low-pass filter and the servomechanism were applied to the collective
command for consistency. Figure 3 shows the comparison of the computed vertical acceleration from Eq. (8) and
actual acceleration. As can be seen, the model, based on linearization of the momentum theory, agrees well with
flight data.

4.1.2 Torque

The main rotor torque can be approximated as a sum of induced torque due to generated thrust, and torque due
to profile drag on the blades [22, p. 116]:

CQ =
Q

ρ (ΩR)2 πR3
= CT (λ0 − µz) +

CD0σ

8

(
1 +

7
3
µ2

)
(11)

where CQ is the torque coefficient, CD0 is the profile drag coefficient of the main rotor blade. The profile drag
is not significantly affected by changes in the collective setting. Thus, the yawing moment produced by the main
rotor is given by

Qmr = CQρ (ΩR)2 πR3 (12)

Our estimate for profile drag coefficient of the main rotor blade is CD0 = 0.024. Underestimation of the profile
drag coefficient would lead to overprediction of the main rotor speed in windmilling flight conditions, which occur
during autorotation and some agile maneuvers.

Except for the hover condition, the rotor in-plane force, which contributes to the drag and sideforce, is substantially
smaller than the drag provided by the fuselage and the sideforce from the fuselage and the empennage. This force
was neglected in the calculations; effectively it was lumped with the fuselage forces, estimated in Section 4.3. The
moments due to the in-plane force are much smaller than those due to the blade flapping, since the torsional
stiffness of the hub retention is high on the X-Cell.

4.1.3 Main rotor moments and flapping dynamics

The main rotor flapping angle β can be represented as a Fourier series of the blade azimuth angle ψ, with only the
first three coefficients retained [22, p. 32]:

β(ψ) = a0 + a1 cosψ + b1 sinψ (13)
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Flapping of the teetering stabilizer bar can be represented by a similar equation without the constant term since
no coning takes place:

βs(ψ) = a1s sinψ + b1s cosψ (14)

Stabilizer bar flapping contributes to the change of the main rotor blade pitch angle through a mechanical linkage:

θ(ψ) = θ0 + θlon sinψ + θlat cosψ + ksβs (15)

The swashplate deflections change the cyclic pitch angle of both the main rotor and the stabilizer bar. Coupled
second-order differential equations can be developed for Fourier coefficients of the main rotor and stabilizer bar
flapping. It can be shown [22, pp. 33-35] that the undamped natural frequency of the flapping motion is close to
the rotorspeed Ωmr, and the damping ratio can be approximated by γ/8, where γ is the Lock number of the blades
being considered (main rotor or stabilizer bar). The Lock number represents the ratio of aerodynamic to inertial
forces and is defined as

γ =
ρcaR4

Iβ
(16)

For the main rotor blades the Lock number is relatively high, γmr ≈ 3.7, therefore the flapping motion is well
damped. For a step response this corresponds to the settling time (to within 5 percent of the steady state value)
of 24/γΩ = 0.039 seconds. For the stabilizer bar, with its small aerodynamic surfaces, the Lock number is low,
γfb ≈ 0.8, and the corresponding settling time is 0.144 seconds. Earlier work on modeling of small-scale rotorcraft
with Bell-Hiller stabilizer bars [19, 15, 11] showed that the main rotor and stabilizer bar flapping dynamics can
be lumped and represented by tip-path plane (TPP) flapping dynamics with only two states. This result was
based on frequency-domain identification and comparison of reduced and full order transfer functions for attitude
dynamics. Furthermore, coupling of the lumped flapping dynamics and rigid body pitch and roll motions leads to
pronounced second-order characteristics [27, 25, 15, 11]. These modes are lightly damped, and should be explicitly
accounted for in designing high-bandwidth attitude or rate control systems [18, 17]. We represented the lateral
and longitudinal flapping dynamics by the first-order equations:

ḃ1 = −p− b1
τe
− 1
τe

∂b1
∂µv

v − vw

ΩR
+
Bδlat

τe
δlat (17)

ȧ1 = −q − a1

τe
+

1
τe

(
∂a1

∂µ

u− uw

ΩR
+
∂a1

∂µz

w − ww

ΩR

)
+
Aδlon

τe
δlon, (18)

where Bδlat
and Aδlon

are effective steady-state lateral and longitudinal gains from the cyclic inputs to the main
rotor flap angles; δlat and δlon are the lateral and longitudinal cyclic control inputs (pilot stick or control system
outputs); uw, vw and ww are the wind components along, respectively, X, Y and Z helicopter body axes; τe is
the effective rotor time constant for a rotor with the stabilizer bar. Frequency-domain identification showed that
the pitch and roll cross-coupling flapping coefficients are approximately an order of magnitude less than the direct
coefficients for the X-Cell [15], and were neglected.

The dominant rotor moments are the control moments produced by the rotor flapping. In the following we describe
the moments in the roll direction (resulting from the lateral TPP flapping b1). Figure 4 shows the rotor moments
that are acting on the fuselage. The first contribution results from the restraint in the blade attachment to the
rotor head. The restraint can be approximated using a linear torsional spring with a constant stiffness coefficient
Kβ ; resulting in a roll moment Mk,lat = Kβb1. The second contribution results from the tilting of the thrust
vector. Assuming that the thrust vector is perpendicular to the TPP, the thrust vector will tilt proportionally to
the rotor flapping angles. The moment arm is the distance hmr between the rotor head and the helicopter center
of gravity; resulting in a lateral moment Mh,lat = Thmrb1. The total main rotor rolling moment, entering the rigid
body equations of motion, is represented by Eq. (19).

Lmr = (Kβ + Thmr) b1 (19)

Similarly, the pitching moment is given by Eq. (20).

Mmr = (Kβ + Thmr) a1 (20)
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Figure 4: Rotor moments acting on the helicopter fuselage

To determine the parameters entering the flapping equations, we can split up the problem into ”slow” and ”fast”
dynamics. First, we can notice that the dihedral derivatives are important only at the low-frequency spectrum of
the dynamics. At high frequencies (above 0.5 Hz) the transfer functions from cyclic inputs to angular rates can
be approximated by second-order transfer functions, derived by omitting the translational flapping derivatives in
Eqs. (17)-(18) and combining it with Eqs. (19)-(20):

q

δlon
≈ Aδlon

τe

ω2
nq

s2 + 1/τes+ ω2
nq

(21)

p

δlat
≈ Bδlat

τe

ω2
np

s2 + 1/τes+ ω2
np

(22)

Pitching dynamics in fast forward flight is significantly influenced by the horizontal tail, which provides a stabilizing
effect, and the main rotor flapping due to vertical speed, which provides a destabilizing effect. Therefore the
longitudinal cyclic to pitch rate transfer function given in Eq. (21) is valid in low-speed flight only. Here the
undamped natural frequencies of the longitudinal and lateral fuselage-rotor modes are:

ωnq =

√
Tmrhmr +Kβ

Iyy

ωnp =
√
Tmrhmr +Kβ

Ixx

Note that for hover and straight and level flight Tmr ≈ mg. The distance between the main rotor hub and the
helicopter center of gravity can be measured. The moments of inertia were determined with the torsional pendulum
tests [4]. The natural frequencies of the lightly damped second-order systems can be easily determined by counting
oscillation periods in a recorded step response, thereby providing an estimate of the hub torsional stiffness. These
parameters are given in Table 1. An approximate value of the damping time constant for the flapping motion [15]
is given in Eq. (23)

τe =
16

γfbΩmr
≈ 0.1 sec (23)

Note that the damping is proportional to the stabilizer bar Lock number, making it small. The steady-state cyclic
to rate gains depend on the swashplate gearing. Experiments have also indicated that the values of Bδlat

and Aδlon

grow with the rotor speed. We approximated this effect as a function of effective dynamic pressure, or square of
the rotor speed:

Bδlat
= Bnom

δlat

(
Ω

Ωnom

)2

rad/rad
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Figure 5: Actual and model roll rate response during axial roll maneuver

Aδlon
= Anom

δlon

(
Ω

Ωnom

)2

rad/rad

Ωnom = 167 rad/sec

These gains were determined by matching DC gain of the angular rate responses to steps in cyclics. Final verification
of the derived parameters is provided by simulation of the linear systems described in Eq. (21) and (22), and
comparison with the flight-test data. Figure 5 shows the actual and simulated roll rates for a segment including
an axial roll maneuver. The helicopter undergoes negative rotor loading during inverted portion of the maneuver,
leading to 15 percent lower roll rate in that segment than predicted by the simplified linear model. Figure 6 shows
the actual and simulated pitch rates for a segment of 15 m/sec forward flight with pulse commands on longitudinal
cyclic. Note that the linearized models of angular rate dynamics are adequate for both small and large amplitude
motion.

The flapping due to translational velocity is described by the flapping derivatives ∂a1/∂µ and ∂b1/∂µv. The
longitudinal flapping due to the forward speed increase is caused by an increased lift on the advancing blade with
respect to the retreating blade, which turns into a flap-back moment on the main rotor due to the 90 degree
gyroscopic phase lag. A theoretical value for the steady-state longitudinal flapping for a rotor without a stabilizer
bar is given by [2, p. 107]

a1 =
2µ (4δcol/3− λ0)

1 + 3µ2/2
≈ 2µ (4δcol/3− λ0) (24)

While this expression is valid for a teetering rotor at hover, theoretical approximation for a hingeless rotor without a
stabilizer bar is very close [22]. The stabilizer bar dramatically reduces flapping response to gusts, and Eq. (24) can
not be used for predicting dihedral effect on a rotor equipped with one. Since this derivative plays a primary role
in the frequency and damping of the phugoid mode, which is very slow, it is difficult to estimate with the frequency
domain identification methods [15]. An open loop excitation would have to last for much longer than it takes for
the helicopter to diverge, therefore the necessary pilot’s feedback would bias an estimate of the derivative [13]. We
introduced a scaling coefficient in Eq. (24), and linearized it to yield

∂a1

∂µ
= 2Kµ

(
4δcol

3
− λ0

)
(25)

A rough estimate for the scaling coefficient Kµ can be obtained by matching the steady-state cyclic input in
forward flight at constant speed (maintained with the velocity-tracking feedback controller) with that predicted
by the simulation in the same conditions. Our estimate for X-Cell 60 yielded Kµ = 0.2, which tells us that the
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Figure 6: Actual and model pitch rate response in low-speed flight

stabilizer bar reduces steady-state flapping response to forward speed by a factor of 5. From Eq. (24) and the rotor
symmetry we conclude that the longitudinal and lateral dihedral derivatives are equal in magnitude, and in both
cases cause the rotor to flap away from the incoming air.

∂b1
∂µv

= −∂a1

∂µ
(26)

Positive Z-axis velocity causes higher lift on advancing blade, which results in a flap-back of the rotor; this effect
is captured by the stability derivative ∂a1/∂µz in Eq. (17). An analytical estimate of the derivative is adapted [2,
p. 159] to accomodate backward flight, and scaled by the same coefficient Kµ to reflect the effect of the stabilizer
bar:

∂a1

∂µz
= Kµ

16µ2

(1− µ2/2) (8 |µ|+ aσ)
sign µ ≈ Kµ

16µ2

8 |µ|+ aσ
sign µ (27)

4.1.4 Rotor forces

For small advance ration flight (µ < 0.15) we can assume that the thrust vector is perpendicular to the TPP. The
small flapping angles (below 10 degrees) allow us to use linear approximation for the main rotor force components
along the helicopter body axes. As was stated above, the in-plane rotor force was lumped with the fuselage forces,
and is not accounted for in the equations below.

Xmr = −Tmra1

Ymr = Tmrb1

Zmr = −Tmr

4.2 Engine, governor and rotorspeed model

The rotorspeed dynamics is modeled by the following equation:

Ω̇ = ṙ +
1
Irot

[Qe −Qmr − ntrQtr] (28)

where Qe is the engine torque (positive clockwise), Qmr = CQρ(ΩR)2πR3 is the main rotor torque (positive
counterclockwise), Qtr is the tail rotor torque, ntr is the tail rotor gear ratio, Irot is the total rotating inertia
referenced to the main rotor speed, and Ω is the rotorspeed. The engine torque depends on the throttle setting
δt and rotorspeed, and is usually represented by engine maps, or look-up tables. The maps for the engine were
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not available, and a simplified representation of the engine torque is suggested. Assume that engine power is
proportional to the throttle setting:

Pe = Pmax
e δt (29)

where 0 < δt < 1. Then the torque is

Qe =
Pe

Ω
(30)

The engine torque response to throttle changes can be considered instantaneous, since the time lags associated
with air intake, fuel flow and combustion are very small compared to vehicle dynamics.

In the absence of manufacturer data, the governor can be modeled as a proportional-integral feedback controller,
maintaining commanded rotorspeed by changing the throttle:

δt = Kp · (Ωc − Ω) +Ki · ωi (31)
ω̇i = Ωc − Ω

where Ωc is the rotorspeed command, Kp and Ki are proportional and integral feedback gains. The antiwindup
logic resets the integrator state value ωi in case computed throttle command is saturated. Throttle servo dynamics
is much faster than the rotorspeed dynamics, and was neglected in the model.

To determine the parameters of the given engine/governor model, we analyzed time response to the rotorspeed step
command. Let us linearize Eqs. (28)-(31) around a nominal operating point, for example hovering flight, neglecting
the yawing acceleration and the tail rotor torque. The states of the linear system will be the rotorspeed deviation
from the nominal ω and an integral of the rotorspeed tracking error ωi. The inputs are ωc - a variation of the
rotorspeed command, and δc - a variation of the collective angle from the trim setting. The resulting linear system
is given in Eq. (32).

d

dt

[
ω
ωi

]
=

[
− 1

ΩIrot

(
3Q0

mr + Pmax
e Kp

) P max
e Ki

ΩIrot

−1 0

] [
ω
ωi

]
+

[
P max

e Kp

ΩIrot
− 1

IrotCQ

∂CQ

∂δc
Q0

mr

1 0

] [
ωc

δc

]
(32)

From Eq. (11) the main rotor torque at hover Q0
mr can be computed, and for the X-Cell with the parameters given

in Table 1 Q0
mr ≈ 6.3 Nm. The characteristic polynomial of the system is given in Eq. (33).

χ(λ) = λ2 + λ
3Q0

mr + Pmax
e Kp

ΩIrot
+
Pmax

e Ki

ΩIrot
(33)

To estimate the coefficients of the characteristic polynomial we performed the following test [24]. The helicopter
was kept at hover at 1600 rpm, and a 100 rpm step input in rotorspeed was commanded to the governor from a
remote control. The rotorspeed measurement was not available directly in the instrumentation package. Instead,
we recorded the sound of the engine with a hand-held camcorder. Next, a time-frequency decomposition analysis [5]
was applied to determine frequency content of the engine noise as a function of time. In such an analysis a signal
of limited duration and frequency, called a wavelet, defined by its central frequency and width, is convoluted in the
time domain with the data. The output in the time domain will have a larger magnitude when the wavelet’s central
frequency is present in the signal than when the central frequency is missing. The spectral content of the signal
as a function of time can then be determined by repeating this computation over a range of frequencies. Many
frequency bands appear in the sound spectrum of the engine noise, representing harmonics. Figure 7 (top) shows
the result of the Morlet wavelet time-frequency analysis performed on the engine noise during a step change in RPM
setting; two harmonics are indicated. The same behavior appears on each harmonic, providing the opportunity
to fine-tune the model to a number of step-responses, thereby reducing measurement error due to external noise.
The governor/engine system was approximated with a second order system, whose response to a commanded RPM
step input appears at the bottom of Figure 7. The system’s damping ratio is ζ = 0.63 and its natural frequency is
ωn = 1.3 rad/sec. By matching the coefficients of the characteristic polynomials we obtain the expressions given
in Eq. (34).

2ζωn =
3Q0

mr + Pmax
e Kp

ΩIrot
(34)

ω2
n =

Pmax
e Ki

ΩIrot
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Figure 7: (top) Two frequency bands in the engine noise spectrum; (bottom) Simulated response to rotorspeed
step command

A total kinetic energy of all rotating components is 2Iβmr
Ω2 + Ies(nesΩ)2 + 2Iβtr

(ntrΩ)2 = (2Iβmr
+ Iesn

2
es +

2Iβtrn
2
tr)Ω

2, where Iβmr and Iβtr are, respectively, the main and the tail rotor blade inertias, Ies is the inertia
of the engine shaft and all components rotating at the engine speed, ntr is the tail rotor gear ratio, and nes is
the engine gear ratio. Therefore the rotating inertia referenced to the main rotor speed can be represented as
Irot = 2Iβmr

+ Iesn
2
es + 2Iβtr

n2
tr. The most important contribution comes from the main rotor blades. The tail

rotor inertia, after scaling with the gear ratio squared, amounts to 5 percent of the main rotor inertia. The rotating
inertia referenced to the engine speed is harder to estimate, but an upper bound can be found by estimating the
total mass of rotating components (0.2 kg) and its effective radius of inertia (0.04 m). We thus arrived at an
estimate for Irot equal to 2.5 inertias of the main rotor blade. Using this value, and matching coefficients of the
characteristic polynomial according to Eq. (34) we obtained estimates for the proportional and integral governor
gains. The model could be further refined if real-time rotorspeed data were available, or the actual governor gain
and the engine maps were available from the manufacturer datasheets.

This engine/governor model is simplified. However, it reflects the trends which are important in some very ag-
gressive maneuvers which involve large and rapid variation of the aerodynamic torque on the rotor. First, tight
governor feedback keeps the rotorspeed close to the nominal setting. Second, an increase in the aerodynamic torque
leads to a temporary decrease in rotorspeed and a lagged application of the yawing torque to the airframe. The
reverse is true for windmilling flight, in which the rotor extracts energy from the air, and leads to an increase in
rotorspeed, and lagged decrease in torque applied to the airframe. The inaccuracies in the model would probably
preclude feedforward compensation of the main rotor torque with the tail rotor; a tight yaw rate feedback to the
tail rotor pitch is much more efficient and is routinely used by R/C pilots in the form of a yaw gyro.

4.3 Fuselage forces

For hover flight and forward speeds well below the induced velocity at hover (≈ 4.5 m/sec for X-Cell), the rotor
downwash is deflected by the forward and side velocity. This deflection creates a force opposing the movement.
We can express the X and Y drag forces created by the fuselage in this flight regime by:

Xfus = Sfus
x

1
2
ρV 2

imr

u

Vimr

Yfus = Sfus
y

1
2
ρV 2

imr

v

Vimr

where Sfus
x and Sfus

y are effective drag areas of the fuselage in the X and Y directions.

When the forward speed is higher than the rotor induced velocity, the fuselage drag can be modeled as the drag of
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a flat plate exposed to dynamic pressure. In this case the perturbations to the fuselage forces can be expressed as:

Xfus = Sfus
x

1
2
ρU2

e

u

Ue

Yfus = Sfus
y

1
2
ρU2

e

v

Ue

where Ue is the trim airspeed.

Considering the above equations, fuselage forces can be approximated by

V∞ =
√
u2

a + v2
a + (wa + Vimr)

2

Xfus = −0.5ρSfus
x uaV∞

Yfus = −0.5ρSfus
y vaV∞

Zfus = −0.5ρSfus
z (wa + Vimr)V∞

where Sfus
x , Sfus

y and Sfus
z are effective frontal, side and vertical drag areas of the fuselage, ua, va and wa are

fuselage center of pressure velocities with respect to air (i.e. ua = u − uw, where uw is the projection of wind
velocity vector on the X body axis). We neglect small moments generated by the fuselage, and assume that the
fuselage center of pressure coincides with the helicopter center of gravity. Based on the fuselage projection areas,
we can assume that Sfus

y ≈ 2.2Sfus
x , Sfus

z ≈ 1.5Sfus
x . Effective frontal drag area can be determined from the

average pitch angle required to maintain a certain forward speed. This is best done under automatic control in
velocity hold mode. In a steady trimmed flight mgθ ≈ −0.5ρU2Sfus

x . A pitch angle of -10 degrees was required to
maintain 14.5 m/sec forward speed, which resulted in the estimate Sfus

x = 0.1 square meters.

4.4 Vertical fin forces and moments

We approximated the sideforce produced by the vertical fin by:

Yvf = −0.5ρSvf

(
Cvf

Lα
V tr
∞ + |vvf |

)
vvf (35)

where Svf is the vertical fin area, Cvf
Lα

is its lift curve slope, V tr
∞ =

√
ua · ua + wtr · wtr is the axial velocity at the

location of the tail rotor hub. vvf is the side velocity relative to air at the location of the vertical fin, wtr is the
vertical velocity (same as for the tail rotor):

vvf = va − εtrvfVitr − ltrr (36)
wtr = wa + ltrq −Kλ · Vimr

(37)

Here Vitr is the induced velocity of the tail rotor (see Eq. (50)), r is yaw rate, εtrvf is the fraction of the vertical
fin area exposed to full induced velocity from the tail rotor, ltr is the vertical distance between the c.g. and tail
rotor hub, which is about the same distance to the center of pressure of the vertical fin, Vimr

- main rotor induced
velocity, Kλ - wake intensity factor, calculated in the tail rotor section.

To accomodate for stall of the vertical fin [14], the absolute value of the vertical fin side force is limited by:

|Yvf | ≤ 0.5ρSvf

((
V tr
∞

)2 + v2
vf

)
(38)

The vertical fin sideforce creates a yawing moment and a small rolling moment due to the offsets from the c.g.:

Nvf = −Yvf ltr

Lvf = Yvfhtr
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4.5 Horizontal stabilizer forces and moments

The destabilizing effect of the main rotor flapping due to vertical speed is offset by the weathervaning provided by
the horizontal tailplane. The horizontal tail produces lift and a stabilizing pitching moment around the center of
gravity. An effective vertical speed at the horizontal tail location is determined, assuming that the stabilizer may
be fully or partially submerged in the downwash of the main rotor:

wht = wa + lhtq −Kλ · Vimr
(39)

The same wake intensity factor is used for the horizontal fin as for the vertical fin and the tail rotor. Next, the
Z-force generated by the horizontal stabilizer is determined according to:

Zht = 0.5ρSht

(
Cht

Lα
|ua|wht + |wht|wht

)
(40)

where Sht is the horizontal stabilizer area, Cht
Lα

= 3.0 is its lift curve slope. To accomodate for the stall of the
horizontal stabilizer [14], the absolute value of the horizontal stabilizer lift is limited by:

|Zht| ≤ 0.5ρSht

(
u2

a + w2
ht

)
(41)

Finally, the pitching moment generated by the horizontal stabilizer is

Mht = Zht · lht (42)

4.6 Tail rotor

The tail rotor is subjected to a wide range of flow conditions, including those where thrust-inflow iteration algorithm
would fail (e.g. when the tail rotor operates in its own wake at a low in-plane airspeed). We have linearized the
thrust-inflow iteration equations around various axial velocities with zero normal velocity and collective pitch value,
which corresponds to trim flight conditions. The resulting aerodynamic coefficients were used to evaluate the tail
rotor thrust.

Ctr
Tµtr

z

=
∂Ctr

T

∂µtr
z

(
|µtr| , µtr

z = 0, δtrim
r

)
(43)

Ctr
Tδr

=
∂Ctr

T

∂δr

(
|µtr| , µtr

z = 0, δtrim
r

)
(44)

Y tr
v = −Ctr

Tµtr
z

ftρΩtrRtrπR
2
tr

m
(45)

Y tr
δr

= −Ctr
Tδr

ftρ (ΩtrRtr)
2
πR2

tr

m
(46)

Ytr = mY tr
δr
δr +mY tr

v µtr
z ΩtrRtr (47)

where ft is the fin blockage factor, as suggested in [22, p. 142]:

ft = 1.0− 3
4
Svf

πR2
tr

The tail rotor speed is given by Ωtr = ntrΩmr , where ntr is the gear ratio given in Table 1. Approximate analytical
expressions for the tail rotor coefficients can be obtained by adapting those used for the main rotor coefficients.
The dimensional coefficients are given in Figures 8 and 9.
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We need to determine the normal (µtr
z ) and the in-plane (µtr) tail rotor inflow components. The main rotor wake

affects the tail rotor thrust in a complex way; to model this influence accurately an extensive modeling of the wake
is required. We decided to approximate just the increase in an apparent in-plane velocity seen by the tail rotor. For
this, determine the main rotor wake intensity factor Kλ. The geometry calculations are equivalent to those given
in [12], but computationally more efficient since an explicit evaluation of the trigonometric functions is avoided.
Calculate the following variables (tangents of the angles determining the geometry):

gi =
ltr −Rmr −Rtr

htr

gf =
ltr −Rmr +Rtr

htr

First, the tail rotor is out of the downwash if Vimr ≤ wa, in which case there is an effective upwash. Next, at low
enough forward speed with respect to air the tail rotor is out of the wake as well. This can be represented by the
condition:

ua

Vimr
− wa

≤ gi

In both of these cases Kλ = 0. The tail rotor is fully in the wake if:
ua

Vimr
− wa

≥ gf (48)

In the far wake the downwash is twice the value at the rotor. We assume that Kλ = 1.5 when the tail rotor is fully
immersed. In the remaining case, when the tail rotor is partially immersed, we assume a linear growth of the wake
intensity factor with the forward speed:

Kλ = 1.5
ua

Vimr−wa
− gi

gf − gi
(49)

The derived expression is used to calculate vertical component of airspeed at the tail rotor location, as shown in
Eq. (37). Next, determine an advance ratio for the tail rotor:

µtr =
u2

a + w2
tr

Ωtr ·Rtr

Velocity component normal to the tail rotor is given by:

vtr = va − ltr · r + htr · p

and in nondimensional form:

µztr
=

vtr

Ωtr ·Rtr

The magnitude of the resulting tail rotor thrust is limited based on the assumed maximum thrust coefficient to
model stall of the blades and other viscous losses.

Y tr
max = ftC

tr
Tmax

ρ (ΩtrRtr)
2
πR2

tr

|Ytr| ≤ Y tr
max

The yawing and small rolling moments due to offsets from the c.g. are computed as follows:

Ntr = −Ytrltr

Ltr = Ytrhtr

We need to compute the tail rotor induced velocity, used in the calculation of the vertical fin side force (see
Eq. (36)). Using the same derivation as for the main rotor [22, pp. 115-123], the inflow ratio is approximated by
Eq. (50).

λtr
0 = µztr − 2

[
2Ctr

T

atrσtr
− δr

(
1
3

+
µ2

tr

2

)]
(50)
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where Ctr
T is the computed tail rotor thrust coefficient, atr is the tail rotor blade lift curve slope given in Table 1,

σtr = 2ctr

πRtr
is the tail rotor solidity ratio.

Finally, the tail rotor torque Qtr is computed similarly to Eq. (11) and (12) using the tail rotor parameters in place
of the main rotor parameters.

5 Actuator models

The command ranges for the cyclics and collective blade pitch are symmetric around the center point. The tail
rotor blade pitch is offset by the trim value given in Table 1, such that the tail rotor pitch is computed as

δr = δcmd
r + δtrim

r (51)

The following maximum commanded deflections were set, in radians:

δmax
lat = 0.096
δmax
lon = 0.096
δmax
col = 0.183
δmax
rcmd

= 0.38

Here δmax
lat and δmax

lon are actual maximum cyclic pitch angles of the main rotor blades, measured statically. The
gearing between servos and pitch angles of control surfaces is close to being linear. Linear functions are used to
relate servo pulsewidth commands to control surface deflections. Look up tables can be used for a different gearing.
Hobby servos and pulsewidth generation electronics used on the helicopter result in significant quantization effects.
On average 150 steps were used to encode rail-to-rail deflection of each control surface. This results, for example, in
a tail rotor command quantization of 0.3 degrees. Linear transfer functions are used to model the servo dynamics.
Futaba S9402 servos, used for collective and cyclic deflections of the main rotor blades, were subjected to small-
amplitude frequency sweeps under 35 oz·in mean load and small inertia, which we assume is representative of the
actual loads experienced by the servos during the flight. The following transfer function came up as a result:

Hservo(s) =
s/Tz + 1
s/Tp + 1

ω2
n

s2 + 2ζωns+ ω2
n

where Tz = 104 sec, Tp = 33 sec, ωn = 36 rad/sec, and ζ = 0.5. Note that 90 deg phase lag occurs at roughly 30
rad/sec, which also imposes a limitation on the control system bandwidth. A fast digital servo (Futaba S9450) was
used for the tail rotor pitch. Since the torque required from the tail rotor servo is much lower than that required
from the swashplate actuators, no-load small-signal bandwidth tests provide an adequate model of the servo. As
a result of the tests, the servo transfer function was approximated by a second order system with the undamped
natural frequency of 7 Hz and the damping ratio of 0.6.

6 Sensor models

6.1 Inertial measurement unit

The vast majority of unmanned helicopter control systems use angular rate gyros and accelerometers, with a no-
table exception of GPS-only control system developed at Stanford University. These sensor readings may include
additional lags in the feedback path. The lags are due to analog antialiasing filters and suspension system dy-
namics [24]. A soft suspension system with the center of gravity of the suspended assembly offset from the elastic
center may introduce substantial coupling. The frequency response of antialiasing filters and suspension system can
be easily measured. The suspension system rotational dynamics was modeled by decoupled second order transfer
functions to accurately represent the resonant modes, which may lead to gain margin deficiency. In the case of
the MIT X-Cell helicopter the translational and rotational modes are largely decoupled, and translational resonant
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frequencies are in the range of 13-18 Hz. The rotational resonant frequencies are: 12.5 Hz in roll, 9.2 Hz in pitch
and 9.5 Hz in yaw. The frequencies of the suspension system resonances represent a tradeoff between the vibration
isolation requirements, which dictate low frequency resonance, and the requirement for low interference with the
rigid body dynamics, which demands high frequencies. The translational dynamics of the helicopter is at least an
order of magnitude slower than translational dynamics of the suspension system. On the other hand, rotational
dynamics of the helicopter contains modes with natural frequencies of 2-3 Hz ( coupled rotor-fuselage pendulum-like
mode ), which necessitates the modeling of the box rotational dynamics. Note that the rotational box movements
relative to the airframe introduce reciprocal moments on the helicopter. However, moments of inertia of the box
are two orders of magnitude less than the moments of inertia of the airframe, therefore the reciprocal moments
were neglected.

In the case of X-Cell the lowest vibration frequency related to the main rotor is 1 per rev, around 27 Hz. Neoprene
isolators were used, which have very low damping ratio (about 0.05), ensuring rapid 40 dB/decade attenuation
at the cost of resonance peak amplification factor of 10. For example vibratory input at the 1 per rev frequency
in yaw is attenuated by a factor (27/9.5)2 = 8. Additional attenuation of the vibratory input in the measured
signal is provided by the first-order analog antialiasing filters with the cut-off set at 9 Hz. In hindsight, the cutoff
frequency of the antialiasing filters was chosen unnecessarily low, 20 Hz cutoff would be sufficient to avoid aliasing.

In addition, accelerometer measurements are different from the center of gravity accelerations due to the IMU offset
from the c.g.

am = acg + ω × ω ×Rm + ω̇ ×Rm (52)

where Rm is a vector representing IMU offset from center of gravity in body axes. This vector was determined from
the flight data, and is given here in meters: Rm =

[
0.07 0.025 0.11

]T . The term ω×ω×Rm containing cross
products of angular rates is small, while the term ω̇ × Rm involving the derivatives of angular rates contributes
substantially to the accelerometer measurements during maneuvers involving rapidly changing angular rates, e.g.
frequency sweeps. Note that in Eq. (52) ω and ω̇ represent vectors of angular rates and angular accelerations of
the suspension assembly.

To use the accelerometer readings in modeling, this term should be estimated using pseudoderivatives of the
measured angular rates, and subtracted from low-pass filtered accelerometer measurements. Appropriate choice of
time constant would result in a near cancellation of the effect.

Both accelerometers and gyroscopes are subject to drift, which is driven primarily by temperature variations and
vibration. The drifts can be modeled as random walks or first-order Markov processes. Quantitative characteristics
are sensor specific, and can be inferred from manufacturer specifications and flight tests.

6.2 Global Positioning System Receiver

A low-latency, high update rate GPS receiver is needed for high-bandwidth helicopter control. The receiver used
on the helicopter has 50 millisecond latency, and 10 Hz update rate. Other sources of error include multipath,
ionospheric and tropospheric delays, satellite and receiver clock drifts, etc. As a rough approximation, these can
be represented by white Gaussian noise, with the standard deviation values determined by ground tests.

Another key requirement for GPS receivers used onboard autonomous aerobatic helicopter is a fast reacquisition
time. The helicopter inevitably loses track of satellites during inverted flight, dead-reckoning is used to estimate
helicopter position and velocity until satellite tracking is reacquired. A common hot reacquisition time is 3 seconds,
sufficiently low to maintain adequate state estimate with dead-reckoning.

6.3 Barometric altimeter

Pressure altimeter provides an accurate source of sea-level altitude information out of ground effect. Important
sources of error are sensor quantization and measurement noise. We used a high-end altimeter with 10−3 psi (0.6
meters) resolution. The measurement noise was assumed to be white Gaussian with a standard deviation of 6 ·10−4

psi.
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7 Conclusion

A 17-state physics-based nonlinear dynamic model of a miniature aerobatic helicopter was developed based. Simple
flight tests were used to determine several key parameters. The model is valid up to advance ratios µ < 0.15 (20
m/sec for X-Cell) for a variety of flight conditions, including negative rotor loading and high angular rates. The
model can be used for developing and evaluating control design methods for demanding tasks, including aerobatics.
This simplified modeling framework is suitable for a class of miniature helicopters with hingeless rotors.
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